Những câu hỏi liên quan
BQ
Xem chi tiết
NH
8 tháng 2 2023 lúc 18:47

Phương pháp phản chứng:

Giả sử n4 + 7.( 7 + 4n3) ⋮ 64 ∀ n \(\in\) { n=2k +1/k \(\in\) N}

theo giả sử ta có với n = 1 thì    14 + 7.( 7 + 4.13) ⋮ 64 

⇔ 1 + 7. 11 ⋮ 64   ⇔ 78 ⋮ 64 ⇔ 64+ 14 ⋮ 64 ⇔ 14 ⋮ 64 ( vô lý)

Vậy n4 + 7.( 7 + 4n3) ⋮ 64 ∀ n lẻ là không thể xảy ra.

 

Bình luận (0)
LN
Xem chi tiết
LT
22 tháng 8 2017 lúc 21:53

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé

Bình luận (0)
NM
Xem chi tiết
NT
10 tháng 11 2016 lúc 22:58

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

Bình luận (0)
NM
11 tháng 11 2016 lúc 19:05

em cam on thay a

Bình luận (0)
PN
17 tháng 10 2020 lúc 14:32

Ta có \(n^4-10n^2+9=n^4-n^2-\left(9n^2-9\right)=n^2\left(n^2-1\right)-9\left(n^2-1\right)=\left(n^2-9\right)\left(n^2-1\right)\)

\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

Do n là số lẻ suy ra n có dạng \(2d+1\)nên ta sẽ cm \(\left(2d-2\right)2d\left(2d+2\right)\left(2d+4\right)=16\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮16\)

Giờ ta cần chứng minh \(\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮24\)thật vậy :

  \(d-1;d;d+1;d+2\)là 4 số nguyên liên tiếp nên chia hết cho 8 và 3 

Suy ra ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NN
Xem chi tiết
PB
3 tháng 2 2022 lúc 6:46

n4 + 7( 7 + 2n2 )

= n4 + 14n2 + 49

= ( n2 + 7 )2

Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )

Thế vô ta được :

[ ( 2k + 1 )2 + 7 ]2

= ( 4k2 + 4k + 1 + 7 )2

= ( 4k2 + 4k + 8 )2

= [ 4( k2 + k + 2 ) ]2

= { 4[ k( k + 1 ) + 2 ] }2

Ta có : k( k + 1 ) chia hết cho 2

            2 chia hết cho 2

=> k( k + 1 ) + 2 chia hết cho 2

=> 4[ k( k + 1 ) + 2 ] chia hết cho 8

=>  { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64

=> đpcm

Bình luận (2)
 Khách vãng lai đã xóa
MS
Xem chi tiết
NN
Xem chi tiết
H9
1 tháng 8 2023 lúc 7:05

Đặt: \(A=n^8-n^6-n^4+n^2\)

\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)

\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)

\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3 

Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\) 

Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn 

Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8 

Còn  \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\) 

Ta có: 

\(\text{Ư}\text{C}LN\left(9;128\right)=1\)

Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)

Bình luận (0)
HD
Xem chi tiết
NT
Xem chi tiết
NT
17 tháng 5 2016 lúc 13:17

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\) chia het cho 12

Bình luận (0)
NT
17 tháng 5 2016 lúc 13:18

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\) chia het cho 12

Bình luận (0)