Những câu hỏi liên quan
NT
Xem chi tiết
H24
3 tháng 11 2018 lúc 20:00

\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)

\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)

\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)

\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)

Bình luận (0)
NT
Xem chi tiết
LA
10 tháng 11 2018 lúc 17:07

\(2x-8x^2=0\Rightarrow2x\left(1-4x\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\1-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)

\(x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Cn lại lm tương tự nha e!

=.= hok tốt!!

Bình luận (0)
TV
Xem chi tiết
H24
26 tháng 3 2017 lúc 11:25

a)x^3+5x-6=0

x^3-x+6x-6

x(x^2-1)+6(x-1)=0

(x-1)(x(x+1)+6)

(x-1)(x^2+x+6)=0

=>x-1 hoac x^2+x+6

TH1

x-1=0

x=1

TH2

x^2+x+6=0

(x^2+2.1/2 x +1/4)-1/4+6=0

(x+1/2)^2=-23/4

vi (x+1/2)^2 >/0

=>pt vo nghiem

=>nghiem cua pt la 1

Bình luận (0)
TC
Xem chi tiết
HH
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Bình luận (0)
NL
Xem chi tiết
MD
2 tháng 8 2023 lúc 11:30

chịu

Bình luận (0)
HD
19 tháng 12 2023 lúc 21:17

Chịu 

Bình luận (0)
H24
3 tháng 7 2024 lúc 19:02

Chịu thôi🙂

Bình luận (0)
CE
Xem chi tiết
NG
Xem chi tiết
RT
23 tháng 6 2017 lúc 12:50

a) \(3\left(x-1\right)+2x-2x^2=0\)

\(\Leftrightarrow3x-3+2x-2x^2=0\)

\(\Leftrightarrow-2x^2+5x-3=0\)

\(\Leftrightarrow-2x^2+2x+3x-3=0\)

\(\Leftrightarrow-2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-2x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy..

b) \(x^2+8x+15=0\)

\(\Leftrightarrow x^2+3x+5x+15=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

Vậy..

Bình luận (1)
H24
23 tháng 6 2017 lúc 13:04

Tìm x :

a) 3(x - 1 ) + 2x - 2x2 = 0

\(\Leftrightarrow3\left(x-1\right)-2x^2+2x=0\)

\(\Leftrightarrow\) 3\(\left(x-1\right)-2x\left(x-1\right)=0\)

\(\Leftrightarrow\) (x - 1 )( 3-2x) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-2x=-3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy....

b) x2 + 8x + 15 = 0

\(\Leftrightarrow x^2+3x+5x+15=0\)

\(\Leftrightarrow\) (x2 + 3x ) + ( 5x + 15 ) =0

\(\Leftrightarrow x\left(x+3\right)+5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

Vậy....

Bình luận (0)
TQ
Xem chi tiết
NT
18 tháng 12 2023 lúc 17:40

a: \(A=\left[\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right)\right]:\left[\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right]\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)

\(=\dfrac{4x\left(x-2\right)-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2\left(x-2\right)}{x\left(x-2\right)}\)

\(=\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{x-1-2x+4}\)

\(=\dfrac{-8x^2}{\left(x+2\right)\cdot\left(-x+3\right)}\)

\(=\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}\)

b: \(x^2+2x=15\)

=>\(x^2+2x-15=0\)

=>(x+5)(x-3)=0

=>\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Thay x=-5 vào A, ta được:

\(A=\dfrac{8\cdot\left(-5\right)^2}{\left(-5-3\right)\left(-5+2\right)}=\dfrac{8\cdot25}{\left(-8\right)\cdot\left(-3\right)}=\dfrac{25}{3}\)

c: |A|>A

=>A<0

=>\(\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}< 0\)

=>(x-3)(x+2)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-2\end{matrix}\right.\)

=>-2<x<3

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-2< x< 3\\x\notin\left\{0;2\right\}\end{matrix}\right.\)

Bình luận (0)
UN
Xem chi tiết
PA
30 tháng 11 2016 lúc 9:17

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

Bình luận (3)
TN
21 tháng 6 2017 lúc 9:34

\(a,2x^2-7x+5=0\Leftrightarrow2x^2-2x-5x+5=0\Leftrightarrow2x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2,5\end{matrix}\right.\)\(b,x\left(2x-5\right)-4x+10=0\Rightarrow x\left(2x-5\right)-2\left(2x-5\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=2,5\end{matrix}\right.\)\(c,\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\Leftrightarrow x^2-25-x^2+2x-15=0\Leftrightarrow2x-40=0\Rightarrow2x=40\Rightarrow x=20\)\(d,x^2\left(2x-3\right)-12+8x=0\Rightarrow2x^3-3x^2-12+8x=0\Leftrightarrow2x^3+8x-3x^2-12=0\Leftrightarrow2x\left(x^2+4\right)-2\left(x^2+4\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+4\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\x^2+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2\\x^2=-4\end{matrix}\right.\Rightarrow x=1\)

Bình luận (0)