\(\frac{15^{10}\times5^{10}}{75^{10}}\)
\(\frac{45^{10}\times5^{20}}{75^{15}}\)
\(\frac{45^{10}\times5^{20}}{75^{15}}=243\)
mk ko nhớ cách giải, chỉ có kết quả, nếu đúng k cho mk nha
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\frac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^7=243\)
Tính giá trị biểu thức sau:
\(\frac{45^{10}\times5^{20}}{75^{15}}\)
Trình bày rõ ràng giúp mình nha, cảm ơn!
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
\(\frac{45^{10}\times5^{20}}{75^{15}}\)
Thử xem làm dc ko nhưng làm thế nào dễ hiểu và nhanh nhé các bạn!
\(A=\frac{100\times2^8\times5^{18}-2^{10}\times5^{19}\times15}{6\times2^8\times5^{19}+10\times2^8\times5^{18}}\)
*Tính:
\(\frac{45^{10}\times5^{20}}{75^5}\)
Cảm ơn mn nhìu ạ
\(\frac{45^{10}.5^{20}}{75^5}\)
\(=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^5}\)
\(=\frac{3^{20}.5^{10}.5^{20}}{5^{10}.3^5}\)
\(=3^{15}.5^{20}\)
\(\frac{45^{10}.5^{20}}{75^5}=\frac{9^{10}.5^{10}.5^{20}}{25^5.3^5}=\frac{3^{20}.5^{10}.5^{20}}{5^{10}.3^5}=\frac{3^{20}.5^{30}}{5^{10}.3^5}=3^{15}.5^{20}\)
tim giá trị của biểu thức
a) \(\left(\frac{1}{5}\right)^5\times5^5\) c)\(\frac{75^{10}\times5^{20}}{75^{15}}\)
b) \(\frac{102^3}{40^3}\) d) \(\frac{2^{15}\div9^4}{6^6\times8^3}\)
a.=[ \(\frac{1}{5}\)x 5 ]5 b. \(\frac{102^3}{40^3}\)=[ \(\frac{102}{40}\)]3 c.=\(\frac{75^{10}.5^{20}}{75^{10}.75^5}\)=\(\frac{5^{20}}{75^5}\)
=15 =[ \(\frac{51}{20}\)]3
=1
1.Tính giá trị biểu thức
a)\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
b)\(\frac{45^{10}\times5^{20}}{75^{15}}\)
2.Tìm x,b
\((x-2)^{2012}+|b^2-9|^{2014}=0\)
Bài 1:
a)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{(2^3)^{20}+(2^2)^{20}}{(2^2)^{25}+(2^6)^{5}}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}(2^{20}+1)}{2^{30}(2^{20}+1)}=2^{10}\)
b)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{(3^2.5)^{10}.5^{20}}{(3.5^2)^{15}}=\frac{3^{20}5^{30}}{3^{15}.5^{30}}=\frac{3^{20}}{3^{15}}=3^5\)
Bài 2:
Ta thấy $(x-2)^{2012}=[(x-2)^{1006}]^2\geq 0$ với mọi $x\in\mathbb{R}$
$|b^2-9|^{2014|\geq 0$ với mọi $b\in\mathbb{R}$ (tính chất trị tuyệt đối)
Do đó để tổng của chúng bằng $0$ thì:
\((x-2)^{2012}=|b^2-9|^{2014}=0\)
\(\Leftrightarrow \left\{\begin{matrix} x-2=0\\ b^2-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ b=\pm 3\end{matrix}\right.\)
Vậy.......
\(\frac{45^{10}.20^{10}}{75^{15}}\)= ?
\(\frac{45^{10}20^{10}}{75^{15}}\)=\(\frac{1125^{10}}{75^5.75^{10}}\)=\(\frac{1125^{10}}{75}\)=\(\frac{1}{75^5}\)=\(\frac{15^{10}}{75^5}\)=\(\frac{15^5.15^5}{75^5}\)=\(\frac{15^5}{75}\).\(15^5\)=\(\frac{1^5}{3}\).\(15^5\)=\(\frac{1}{3}.15^5\)=\(^{5^5}\)=3125
\(\frac{4^{10}.20^{10}}{75^{15}}=??\)
\(\frac{4^{10}.20^{10}}{75^{15}}\)
\(=\frac{1125^{10}}{75^5.75^{10}}\)
\(=\frac{1125^{10}}{75}\)
\(=\frac{1}{75^5}\)
\(=\frac{15^{10}}{75^5}\)
\(=\frac{15^5.15^5}{75^5}\)
\(=\frac{15^5}{75}.15^5\)
\(=\frac{1}{3}^5.15^5\)
\(=\frac{1}{3}.15^5\)
\(=^{5^5}\)
\(=3125\)