Cho tam giác ABC. CMR: \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180o
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC. CMR: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
kẻ xA//BC
\(=>\angle\left(A3\right)=\angle\left(C\right)\left(so-le-trong\right)\)
\(=>\angle\left(A1\right)=\angle\left(B\right)\left(so-le-trong\right)\)
mà \(\angle\left(A1\right)+\angle\left(A2\right)+\angle\left(A3\right)=180^o\left(ke-bu\right)\)
\(=>\angle\left(A2\right)+\angle\left(B\right)+\angle\left(C\right)=180^o\)
5. Cho tam giác ABC; 2 đường phân giác AD, BE; với D ϵ BC, E ϵ AC. CMR:
a) \(\widehat{ADC}=\widehat{BEC}\) thì \(\widehat{A}=\widehat{B}\).
b) \(\widehat{ADB}=\widehat{BEC}\) thì \(\widehat{A}+\widehat{B}=120^o\).
a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.
Vì AD là đường phân giác của góc BAC, nên ta có:
∠DAB = ∠DAC (1)
Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:
∠CBA = ∠CBE (2)
Từ (1) và (2), ta có:
∠DAB + ∠CBA = ∠DAC + ∠CBE
∠DAB + ∠CBA = ∠BAC + ∠ABC
∠DAB + ∠CBA = ∠ABC + ∠BAC
Do đó, góc ADC bằng góc BEC.
Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:
∠DAB = ∠DAC
∠EBA = ∠EBC
Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:
∠DAC + ∠ADC = ∠DAB + ∠ABC
∠DAB + ∠ABC = ∠DAC + ∠ADC
Từ đây, suy ra ∠A = ∠B.
Vậy, điều phải chứng minh a) đã được chứng minh.
b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.
Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:
∠ADB + ∠BEC = ∠BEC + ∠BEC
∠ADB + ∠BEC = 2∠BEC
∠ADB = ∠BEC
Do đó, góc ADB bằng góc BEC.
Tiếp theo, ta có:
∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)
∠ADB + ∠B + ∠BEC = 180°
∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)
2∠BEC + ∠B = 180°
2∠BEC = 180° - ∠B
∠BEC = (180° - ∠B) / 2
∠BEC = 90° - ∠B/2
∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)
∠A/2 + ∠B/2 + ∠C = 90°
∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2
∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2
∠A + ∠C = 90° - ∠A/2
∠A + ∠C + ∠A/2 = 90°
2∠A + ∠C = 180°
∠A + ∠C = 180° - ∠A
∠A + ∠C = ∠B
∠A + ∠B + ∠C = 180°
∠A + ∠B + ∠C = 120° + 60°
∠A + ∠B + ∠C = 180°
Do đó, ∠A + ∠B = 120°.
Vậy, điều phải chứng minh b) đã được chứng minh.
Cho tam giác ABC có \(\widehat{C}=2\widehat{B}=4\widehat{A}\). CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{BC}\)
Cho tam giác ABC, O là điểm nằm trong tam giác.
a) Cmr: \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Biết: \(\widehat{ABO}+\widehat{ACO}=90-\widehat{\frac{A}{2}}\) và tia BO là tia phân giác của góc B. Cmr: Tia CO là tia phân giác của góc C
Vẽ hình nha bạn
7. Cho tam giác ABC và điểm O nằm trong tam giác. CMR: \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\).
Kéo dài tia AO và đặt là Ax. Khi đó:
\(\widehat{BOC}=\widehat{BOx}+\widehat{COx}\)
Xét tam giác OAB có \(\widehat{BOx}\) là góc ngoài tại O nên
\(\widehat{BOx}=\widehat{A_1}+\widehat{ABO}\) (1)
Tương tự, ta có \(\widehat{COx}=\widehat{A_2}+\widehat{ACO}\) (2)
Cộng theo vế (1) và (2), ta được:
\(\widehat{BOC}=\widehat{A_1}+\widehat{A_2}+\widehat{ABO}+\widehat{ACO}\)
\(=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
Ta có đpcm.
1. Cho tam giác ABC và một điểm O nằm trong tam giác
a) CMR: \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b)Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{1}{2}\widehat{A}\) và BO là tia phân giác của góc ABC. CMR: OC là tia phân giác của góc ACB
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Cho tam giác ABC có \(\widehat{C}< \widehat{B}< 90\)độ . Vẽ đường phân giác AD và đường cao AH của tam giác ABC.
a. CMR: \(\widehat{HAB}+\widehat{HAD}=\widehat{HAC}-\widehat{HAD}\)
b. CMR: \(\widehat{HAC}-\widehat{HAB}=\widehat{ABC}-\widehat{ACB}\)
c. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)
\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)
Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM
b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)
=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)
Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)
=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)
Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)
\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)
\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)
\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)
c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)
\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)
1. Cho tam giác ABC có \(\widehat{C}< \widehat{B}< 90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR: \(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
1.Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR:
a) \(_{2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}}\)
b) \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c)\(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)