Tìm GTLN của đa thức
c, 2x - 2x\(^2\)- 5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTLN của đa thức sau:=2x-2x2-5
Tìm GTLN của đa thức A=2x-2x2-5
\(A=2x-2x^2-5\)
\(A=-2\left(x^2-x\right)-5\)
\(A=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(A=-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\)
Có \(2\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2\le0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\le-4\frac{1}{2}\)với mọi x
=> \(A\le-4\frac{1}{2}\)với mọi x
Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\)<=> \(x=\frac{1}{2}\)
KL: \(A_{max}=-4\frac{1}{2}\)<=> \(x=\frac{1}{2}\)
Bài 5: Tìm GTNN của các biểu thức sau:
a) A = x^2 – 4x + 9
b) B = x^2 – x + 1
c) C = 2x^2 – 6x
Bài 4: Tìm GTLN của các đa thức:
a) M = 4x – x^2 + 3
b) N = x – x^2
c) P = 2x – 2x^2 – 5
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Bài 1: Cho hai đa thức f (x) = 3 x^ 2 + x + x ^4 - x ^ 3 - x ^ 2 + 2x +3
g (x) = x^ 4+ 2 x ^ 2 + x ^ 3
a, Sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm dần của biến
b, Tìm bậc của hai đa thức
c, Tính h(x) = f(x) + g(x) và k(x) = g(x) - f(x)
a)
`f(x)=3x^2+x+x^4-x^3-x^2+2x+3`
`=x^4-x^3+2x^2+3x+3`
`g(x)=x^4+2x^2+x^3=x^4+x^3+2x^2`
b)
Bậc của `f(x)`: 4
Bậc của `g(x)`: 4
c)
`h(x)=f(x)+g(x)=x^4-x^3+2x^2+3x+3+x^4+x^3+2x^2`
`=2x^4+4x^2+3x+3`
`k(x)=g(x)-f(x)=x^4+x^3+2x^2-(x^4-x^3+2x^2+3x+3)`
`=x^4+x^3+2x^2-x^4+x^3-2x^2-3x-3`
`=2x^3-3x-3`
Tìm GTLN của các đa thức:
N = x - x2
P = 2x - 2x2 - 5
a
\(N=x-x^2\)
\(\Leftrightarrow-N=x^2-x\)
\(\Leftrightarrow-N+\frac{1}{4}=x^2-x+\frac{1}{4}\)
\(\Leftrightarrow-N+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
\(\Leftrightarrow-N=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N_{max}=-\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=x-x^2\)
\(=-x^2+2.x.\frac{1}{2}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le0+\frac{1}{4};\forall x\)
Hay \(N\le\frac{1}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy MAX \(N=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=x-x^2\)
\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
\(=\left(-\frac{1}{4}+x\right)\left(\frac{3}{4}-x\right)\)
a) tìm GTLN của đa thức\(\frac{1}{2x^2-5x+5}\)\(\)
b) tìm GTNN của đa thức \(\frac{x^2-2x+2009}{x^2}\)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
Tìm GTNN của các đa thức
a, P = x^2 - 2x +5
b, Q = 2x^2 -6x
c, M = x^2 +y^2 - x + 6y + 10
Tìm GTLN của các đa thức :
a, A = 4x - x^2 +3
b, B= x - x^2
b, N= 2x -2x^2 -5
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
Tìm GTlN, GTNN của các đa thức sau :
a) M = x^2 - 2x + 5
b) N = 4x - x^2 + 3
2−2x+5
2+2x−5)
2+2x+1)+6
2+6
2≤0∀x
2+6≤6∀x
Dấu "=" xảy ra ⇔
Vậy
2+3
22−4x−3)
2−4x+4−7)
2−7]
2+7
22+7≤7
2=0⇔x=2
Vậy MAXA=7 khi x = 2
tìm GTLN của các đa thức sau
a, A= 4x-x^2+3
b, B= x-x^2
c, C= 2x-2x^2-5
a. \(A=4x-x^2+3=7-\left(x^2-4x\right)+4=7-\left(x-2\right)^2\le7\)
b.\(B=x-x^2=\frac{1}{4}-\left(x^2-x+\frac{1}{4}\right)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
c.\(C=2x-2x^2-5=-\frac{9}{2}-2\left(x^2-x+\frac{1}{4}\right)=-\frac{9}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{9}{2}\)