CMR: \(2^{2^{6n+2}}+13⋮29\forall n\inℕ^∗\)
\(CMR:3^{2n+2}+2^{6n+1}⋮11\forall n\inℕ^∗\)
cmr,\(\forall n\inℕ\)
a) \(2^{2^{4n+1}}+7⋮11\)
b)\(2^{2^{6n+2}}+3⋮19\)
(dung định lí Fermat )
CMR: \(13^n-1⋮12\left(\forall n\inℕ\right)\)
\(Ta có : 13^n - 1\)
\(= ( 13 - 1 )( 13\)\(n - 1\) \(+ 13\)\(n - 2\) \(+ ... + 13 . 1\)\(n - 2\) \(+1\)\(n - 1\) \()\)
\(= 12 . ( 13\)\(n - 1\) \(+ 13\)\(n - 2\)\(.1 + ... + 13 . 1\)\(n - 2\) \(+ 1\)\(n - 1\)\()\)\(⋮\)\(12\)
\(Vậy : 13^n - 1 \)\(⋮\)\(12\)
Bài 1 : .CMR tổng của 3 số chính phương liên tiếp không là số chính phương
Bài : 2. CMR :
a)7 . 52n + 12 . 6n \(\forall n\inℕ\)
b) 22n + 5 \(⋮\)7 \(\forall n\inℕ\)
Lưu ý : Bài 2 áp dụng tính chất đồng dư thức
ha tuan anh
Trả lời đc rồi hãng nói đến t i c k
Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à
và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá
Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi
Ko cho ra đc lời giải thì thôi đừng tl làm j cả
CMR \(\left(x+1\right)^{2n+1}+x^{n+2}⋮x^2+x+1\forall x\inℕ^∗\)
1. Tìm tất cả \(n\inℕ\)sao cho \(n^2+17\)là một số chính phương
2. CMR: \(\forall n\inℕ\), ta có \(n^2+n+2\)không chia hết cho \(3\)
Chứng minh \(\forall n\inℕ^∗\) thì \(n^3+n+2\) là hợp số
\(P=n^3+n+2\)
\(=\left(n^3+1\right)+\left(n+1\right)\)
\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)
\(=\left(n+1\right).\left(n^2-n+2\right)\)
Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)
nên P là hợp số
CMR:\(5^n\)\(+2\cdot3^{n-1}\)\(+1⋮8,,\forall n\inℕ^∗\)
sử dụng phương pháp quy nạp
\(\left(n^2+3n+1\right)^2-1⋮24\forall n\inℕ\)
Ta có: \(\left(n^2+3n+1\right)^2-1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
*Do n là số tự nhiên nên tích trên là tích 4 số tự nhiên liên tiếp
Trong 4 số tự nhiên liên tiếp có 2 số chẵn liên tiếp, trong đó 1 số chia hết cho 4, số còn lại chia hết cho 2
=> Tích đó chia hết cho 8(1)
Trong 4 số tự nhiên liên tiếp chia hết cho 3
=> Tích đó chia hết cho 3(2)
Từ (1) và (2)
=> Tích 4 số tự nhiên liên tiếp chia hết cho 24
=> ĐPCM*
\(\left(n^2+3n+1\right)^2-1\)
\(=n^4+9n^2+1+6n^3+6n+2n^2-1\)
\(=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 2, 3, 4
mà \(\left(2,3,4\right)=1\)
nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24
hay \(\left(n^2+3n+1\right)^2-1\) chia hết cho 24
\(\left(n^2+3n+1\right)^2-1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+3\right)\left(n^2+n+2n+2\right)\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
Vì n là số tự nhiên nên n(n+3)(n+1)(n+2) la tích 4 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+3\right)\left(n+1\right)\left(n+2\right)⋮1.2.3.4=24\)