(Nghi binh 23/09)
Ez one:
Cho \(x,y>0;x+y\le2\). Tìm GTNN của biểu thức:
\(S=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
(Nghi binh 19/09)
Nhìn thì ez đấy, nhưng lúc đầu hơi ức chế.
Cho \(\hept{\begin{cases}a,b,c>0\\abc=1\end{cases}}\).Chứng minh rằng:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Bài ezzz =))))
\(VT=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)
Áp dụng bđt Bunhiacopski ta có
\(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
cách 2 . đặt ẩn phụ nhé bro
Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)\(\Rightarrow xyz=1\), khi đó :
Bất đẳng thức cần chứng minh tương đương :\(\frac{1}{\left(\frac{1}{x}\right)^2\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^2\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^2\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)
\(< =>\frac{x^3yz}{y+z}+\frac{xy^3z}{z+x}+\frac{xyz^3}{x+y}\ge\frac{3}{2}< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{x+z}+\frac{x+z}{4}\right)+\left(\frac{z^2}{x+y}+\frac{x+y}{4}\right)\ge2\sqrt{\frac{x^2}{4}}+2\sqrt{\frac{y^2}{4}}+2\sqrt{\frac{z^2}{4}}=\frac{2x}{2}+\frac{2y}{2}+\frac{2z}{2}=x+y+z\)
Suy ra :\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{x+y+y+z+z+x}{4}\ge x+y+z< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Theo đánh giá của AM-GM thì : \(\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)Từ đó ta suy ra được :
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)
(Nghi binh 19/09)
Cho x,y là các số thực thỏa mãn y<0<x và x+y=1
a) Rút gọn biểu thức \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
b) Chứng minh rằng: \(A< -4\)
a) \(ĐKXĐ:x,y\ne0;x\ne\pm y\)
Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x+y\right)^2}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{x^2.\left(x^2-y^2\right)}{\left(x^2-y^2\right).\left(x^2-y^2\right)}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x^2+2xy+y^2\right)-2x^2y-x^2.\left(x^2-y^2\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{x^2y^2+y^4+2xy^3-2x^2y-x^4+x^2y^2}{\left(x-y\right)^2\left(x+y\right)^2}\right]\)
Đề này lỗi mình nghĩ vậy vì trên tử kia không đẹp lắm.....
(Nghi binh 21/09)
Cho \(x,y,z,t>0\)
a) Tính \(\frac{7x^3+y^3+12z^3}{2x^2y+3xyz+5xz^2}\)nếu \(x^3+y^3+z^3=3xyz\)
b) Tính \(B=\frac{x^6+2y^6+3z^6+4xyz^4+10yzt^4}{5xy^2z^3}\)nếu \(x^4+y^4+z^4+t^4=4xyzt\)
a) Áp dụng BĐT AM-GM cho 3 số: \(x^3+y^3+z^3\ge3xyz\) dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Mà đề cho \(x^3+y^3+z^3=3xyz\)nên ta được \(x=y=z\)
\(\Rightarrow\frac{7x^3+y^3+12z^3}{2x^2y+3xyz+5xz^2}=\frac{7x^3+x^3+12z^3}{2x^3+3x^3+5x^3}=\frac{20x^3}{10x^3}=2\)
b) Áp dụng BĐT AM-GM cho 4 số dương: \(x^4+y^4+z^4+t^4\ge4xyzt\)
Mà đề cho dấu "=" xảy ra vậy đề bài tương đương với \(x=y=z=t\)
\(\frac{x^6+2y^6+3z^6+4xyz^4+10yzt^4}{5xy^2z^3}=\frac{x^6+2x^6+3x^6+4x^6+10x^6}{5x^6}=\frac{20x^6}{5x^6}=4\)
Hãy xác định các mùa ở vùng ôn đới bán cầu Nam trong các khoảng thời gian: từ ngày 21-03 đến 22-6, từ ngày 22-06 đến ngày 23-09, từ ngày 23-09 đén ngày 22-12, từ ngày 22-12 đến ngày 21-03.
Hãy xác định các mùa ở vùng ôn đới bán cầu Nam trong các khoảng thời gian:
=>
từ ngày 21-03 đến 22-6 => mùa thu
từ ngày 22-06 đến ngày 23-09=> mùa đông
từ ngày 23-09 đén ngày 22-12 => mùa xuân
từ ngày 22-12 đến ngày 21-03 => mùa hạ
(Nghi binh 25/09)
Dạo này bận nhiều nên cho tàm tạm:
Câu 1:
Tìm tất cả các nghiệm nguyên của phương trình: \(3x-16y-24=\sqrt{9x^2+16x+32}\)
Câu 2: Cho ba số a,b,c đôi một khác nhau, c khác 0. Chứng minh rằng nếu hai phương trình \(x^2+ax+bc=0\)
và \(x^2+bx+ca=0\)có đúng một nghiệm chung thì các nghiệm còn lại của chúng thỏa mãn phương trình: \(x^2+cx+ab=0\).
Câu 1:
Đặt phương trình là (1)
ĐK: \(3x-16y-24\ge0\)
\(3x-16y-24=\sqrt{9x^2+16x+32}\Leftrightarrow\left(3x-16y-24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow9\left(3x-16y-24\right)^2=9\left(9x^2+16x+32\right)\)\(\Leftrightarrow\left(9x-48y-72\right)^2=81x^2+144x+288\)
Với x, y nguyên thì (3y+5) là ước của (-7) và chia cho 3 dư 2
=> (3y+5)=-1 hoặc (3y+5)=-7
+ TH1: \(\left(3y+5\right)=-1\Leftrightarrow y=-2\Rightarrow x=-1\)
+ TH2: \(\left(3y+5\right)=-7\Leftrightarrow y=-4\Rightarrow x=-7\)
Vậy các cặp nghiệm nguyên của (x;y) là: (-1;-2); (-7;-4)
\(\Leftrightarrow\left(9x-48y-72\right)^2=\left(9x+8\right)^2+224\)
\(\Leftrightarrow\left(9x-48y-72\right)^2-\left(9x+8\right)^2=224\)
\(\Leftrightarrow\left(9x-48y-72+9x-8\right)\left(9x-48y-72-9x-8\right)=224\)
\(\Leftrightarrow\left(18x-48y-64\right)\left(-48y-80\right)=224\)
\(\Leftrightarrow-32\left(9x-24y-32\right)\left(3y+5\right)=224\)
\(\Leftrightarrow\left(9x-24y-32\right)\left(3y+5\right)=-7\)
giả sử a là nghiệm chung của 2 phương trình
\(x^2+\text{ax}+bc=0\left(1\right)\) và \(x^2+bx+ca=0\left(2\right)\)
Ta có: \(\hept{\begin{cases}a^2+a\alpha+bc=0\\a^2+b\alpha+ca=0\end{cases}}\)
\(\Rightarrow\alpha\left(a-b\right)+c\left(b-a\right)=0\Rightarrow\left(a-c\right)\left(a-b\right)=0\Rightarrow\alpha=c\ne0\)
Thay \(\alpha=c\)vào (1) ta có: \(c^2+ac+bc=0\Rightarrow c\left(a+b+c\right)=0\Rightarrow a+b+c=0\)
Mặt khác, theo định lý Viet phương trình(1) còn có nghiệm nữa là b, phương trình(2) còn có nghiệm nữa là a. Theo định lý Viet đảo, a và b là hai nghiệm của phương trình \(x^2-\left(a+b\right)x+ab=0\Leftrightarrow x^2+cx+ab=0\left(\text{đ}pcm\right)\)
tim x,y,z eZ (x-3)^2+/2y-6/+16z^2=0
e là thuộc
Ta có : (x - 3)2 \(\ge0\forall x\in Z\)
|2y - 6| \(\ge0\forall x\in Z\)
16z2 \(\ge0\forall x\in Z\)
Mà : (x - 3)2 + |2y - 6| + 16z2 = 0
Nên : \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left|2y-6\right|=0\\16z^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-6=0\\z^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\2y=6\\z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=0\end{cases}}\)
Vậy x = 3 , y = 3 , z = 0 .
binh nghi mot so chia cho 356 duoc thuong la 908 va so du a so du lon nhat co the. tim so binh nghi
(Nghi binh 25/09)
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\)
Đặt: \(S_1=\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)
và: \(S_2=\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)
Chứng minh rằng: GTLN \(S_1\)= GTLN \(S_2\)
Ta có \(\hept{\begin{cases}a+b+c=3\\a,b,c>0\end{cases}\Rightarrow\hept{\begin{cases}a+b+c=3\\a,b,c\ge1\end{cases}}}\)
Vì \(a,b,c\ge1\)
\(\Rightarrow a+b+c\le a^2+b^2+c\)
\(\Rightarrow\frac{1}{a+b+c}\ge\frac{1}{a^2+b^2+c}\left(1\right)\)
Tương tự
\(\frac{1}{a+b+c}\ge\frac{1}{b^2+c^2+a}\left(2\right)\)
\(\frac{1}{a+b+c}\ge\frac{1}{c^2+b^2+a}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\frac{3}{a+b+c}\ge\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)
\(\Rightarrow\frac{3}{3}\ge\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)
Vậy Max S1 = 3/3 = 1 \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\) (4)
Vì \(a,b,c\ge1\)
\(\Rightarrow a+b+c\le a^2+b+c\)
\(\Rightarrow\frac{1}{a+b+c}\ge\frac{1}{a^2+b+c}\left(5\right)\)
Tương tự
\(\frac{1}{a+b+c}\ge\frac{1}{b^2+c+a}\left(6\right)\)
\(\frac{1}{a+b+c}\ge\frac{1}{c^2+b+a}\left(7\right)\)
Từ \(\left(5\right);\left(6\right);\left(7\right)\Rightarrow\frac{3}{a+b+c}\ge\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)
\(\frac{3}{3}\ge\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)
Vậy Max S2 = 3/3 = 1 \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\) (8)
Từ (4); (8) => GTLN S1 = GTLN S2 (đpcm)
a.0,(8) b.12,(09)
giải
a.ta có 0,(8)=8.0,(1) mà 1/9=0,111...=0,(1) nên 0,(8)=8/9
vậy 0, (8)=8/9
b.12,(09)=12+0,(09) mà 0,(09)=12+.../....
vậy 12,(09)=.../...