\(x^2+\sqrt{x+1}=1\)
Tìm x, hãy dùng phương pháp đặt ẩn phụ
Help meee
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x (dùng phương pháp đặt ẩn phụ):
\(x^2+2x+5=\frac{5}{2}\sqrt{x^3+4x^2+5x+6}\)
ĐK: \(x^3+4x^2+5x+6\ge0\)
Ta có: \(x^3+4x^2+5x+6=\left(x+3\right)\left(x^2+x+2\right);x^2+2x+5=\left(x+3\right)+\left(x^2+x+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=u\\\sqrt{x^2+x+2}=v\end{cases}}\)
Vậy nên ta có phương trình: \(\)\(u^2+v^2=\frac{5}{2}uv\)
\(\Leftrightarrow2u^2-5uv+2v^2=0\Leftrightarrow\orbr{\begin{cases}u=2v\\u=\frac{1}{2}v\end{cases}}\)
Với u = 2v ta có: \(\sqrt{x+3}=2\sqrt{x^2+x+2}\Leftrightarrow x+3=4x^2+4x+8\)
\(\Leftrightarrow4x^2+3x+5=0\) (Vô nghiệm)
Với \(u=\frac{1}{2}v\) ta có: \(2\sqrt{x+3}=\sqrt{x^2+x+2}\Leftrightarrow4x+12=x^2+x+2\)
\(\Leftrightarrow x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\left(tmđk\right)\)
Vậy phương trình có nghiệm \(x\in\left\{5;-2\right\}\)
giải phương trình 6x^2 +7x căn x+1=24(x+1)
dùng phương pháp đặt ẩn
x(x-1)(x-2)(x-3)-3
dùng phương pháp đặt ẩn phụ
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)
\(=x\left(x-3\right)\left(x-1\right)\left(x-2\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
Đặt \(x^2-3x+1=t\)
\(=\left(t-1\right)\left(t+1\right)-3\)
\(=t^2-1-3=t^2-4\)
\(=\left(t-2\right)\left(t+2\right)\)
\(=\left(x^2-3x+1-2\right)\left(x^2-3x+1+2\right)\)
\(=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)
dùng phương pháp đặt ẩn phụ để giả pt sau: \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đk : với mọi x
Đặt \(\sqrt{x^2-3x+3}=a\)
pt trở thành : a+\(\sqrt{a^2+3}\)=3
<=> \(\sqrt{a^2+3}\)= 3-a
=> a^2+3 = 9-6a+a^2
<=> a^2+3-(9-6a+a^2)=0
<=> 6a-6=0
<=> 6a=6
<=> a=1
<=> \(\sqrt{x^2-3x+3}\)=1
<=> x^2-3x+3=1
<=> x^2-3x+2=0
<=> (x-1).(x-2) = 0
<=> x=1 hoặc x=2
Thử lại thì đều tm
Vậy .............
Tk mk nha
bài quân thêm đk a>=0 ; và khi bình phương thì 3-a >=0
Tìm x (dùng phương pháp đặt ẩn phụ)
\(x^2+2x+5\)\(= {5 \over 2}\)\(\sqrt{x^3+4x^2+5x+6}\)
rút gọn bằng phương pháp đặt ẩn phụ
\(1+\sqrt[3]{x-116}x=\sqrt[3]{x+3}\)
Dùng phương pháp đặt ẩn phụ:
a) (x^2+x)^2+3(x^2+x)+2
b) x(x+1)(x+2)(x+3)+1
c) (x^2+x+1)(x^2+3x+1)+x^2
hãy giúp mình giải nhé xin cảm ơn trước
Giải PT (dùng phương pháp đặt ẩn phụ):
\(\frac{\left(a-x\right)\sqrt[4]{x-b}+\left(x-b\right)\sqrt[4]{a-x}}{\sqrt[4]{a-x}+\sqrt[4]{x-b}}=\frac{a-b}{2}\)
TXD x>= b, x<=a : x khác a=b
Đặt (a-x) = A, (x-b) = B
Vế phải = (a-x+x - b)/2 = (A + B)/2
2 x (A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\))= (A+B) (\(\sqrt[4]{A}\)+ \(\sqrt[4]{B}\))
= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)+A\(\sqrt[4]{B}\)
A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\)= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)
\(\sqrt[4]{B}\)(A-B) = \(\sqrt[4]{A}\)(A-B)
=> A = B => a-x = x-b => x = (a+b)/2 (a khác b)
giải phương trình : ( phương pháp đặt ẩn phụ nha bạn)
\(\frac{1}{1-x^2}=\frac{3}{\sqrt{1-x^2}}-1\)
Thích đặt ẩn phụ thì đặt vậy
Đặt \(\frac{1}{\sqrt{1-x^2}}=a\left(a>0\right)\) thì PT trở thành
\(a^2=3a-1\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3+\sqrt{5}}{2}\\a=\frac{3-\sqrt{5}}{2}\end{cases}}\)
Thế vô làm tiếp nhé