Tính B= sin^2 1° + sin^2 2° + sin^2 3° +....+ Sin^2 89°
a) sin^2 . 1° + sin^2 . 2° + sin^2 . 3° + ..... + sin^2 . 89° = ?? , tính
b) cho : sin x + cos x = 7/5 ( 0° < x < 90° ) .. Tính tan x = ?
Mọi người làm giúp em với , em cảm ơn
a) Ta có: \(\sin^2a^o=\cos^2\left(90^o-a^o\right)\)
Biểu thức trên
\(=\left(\sin^21^o+\sin^o89\right)+\left(\sin^22^o+\sin^288^o\right)+...+\left(\sin^244^o+\sin^246^o\right)+\sin^245^o\)
\(=\left(\sin^21^o+\cos^21^o\right)+\left(\sin^22^o+\cos^22^o\right)+...+\left(\sin^244^o+\cos^246^o\right)+\sin^245^o\)
\(=1+1+..+1+\sin^245^o=44+\frac{1}{2}=\frac{89}{2}\)
b)
Ta có: \(\sin^2x+\cos^2x=1\)
\(0^o< x< 90^o\)
=> \(0< \sin x;\cos x< 1\)
Ta có: \(\frac{\sin^2x+\cos^2x}{\text{}\text{}\sin x.\cos x}=\frac{1}{\frac{12}{25}}=\frac{25}{12}\Leftrightarrow\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{25}{12}\)
\(\Leftrightarrow\tan x+\frac{1}{\tan x}=\frac{25}{12}\Leftrightarrow\tan^2x-\frac{25}{12}\tan x+1=0\)
Đặt t =tan x => có phương trình bậc 2 ẩn t => Giải đen ta => ra đc t => ra đc tan t
\(\Leftrightarrow\orbr{\begin{cases}\tan x=\frac{3}{4}\\\tan x=\frac{4}{3}\end{cases}}\)
A= sin21+sin22+sin23+...+sin289-1/2
Tính:
(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)
Tính
A=sin^2 1 độ + sin ^2 2 độ + sin^2 3 độ +..........+ sin ^2 89 độ
B =tan 1 độ * tan 2 độ * tan 3 độ *............ tan 89độ
Sin21+Sin22+...+Sin289
\(=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o\)
\(=\left(sin^21^o+cos^21^o\right)+\left(sin^22^o+cos^22^o\right)+...+\left(sin^244^o+cos^244^o\right)+\left(\frac{\sqrt{2}}{2}\right)^2\)
\(=1+1+...+1+\frac{1}{2}\) ( 44 số hạng 1 )
\(=44+\frac{1}{2}=\frac{89}{2}\)
Tính giá trị biểu thức sau
a) sin2 1° +sin2 3° + sin2 5° +.....+ sin2 89°
b) tg5°.tg10°.tg15°.....tg85°
sử dụng 2 góc phụ nhau nha
vd: sin1=cos89
Tính:
(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)
Rút gọn:
a) \(\left(\frac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
b) \(\left(\sin^4+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)
=(cos 89 độ +... + cos 2 độ +cos 1 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)
=0
1. Cho tam giác $ABC$. Chứng minh rằng $\sin ^{2} A+\sin ^{2} B-\sin ^{2} C=2\sin A.\sin B.\cos C$.
2. Chứng minh rằng:
a. $\sin \alpha .\sin \left(\dfrac{\pi }{3} -\alpha \right).\sin \left(\dfrac{\pi }{3} +\alpha \right)=\dfrac{1}{4} \sin 3\alpha $
b. $\sin 5\alpha -2\sin \alpha \left({\rm cos} {\rm 4}\alpha +\cos 2\alpha \right)=\sin \alpha $
.jkilfo,o7m5ijk
Bài 1: Tính A= Sin mũ 2 10 độ + Cos mũ 2 20 độ + Sin mũ 2 80 độ + Sin mũ 2 70 độ B= Sin mũ 2 15 độ + Sin mũ 2 35 độ + Sin mũ 2 75 độ + Sin mũ 2 55 độ
a: \(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)
\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)
\(=2\cdot sin^270^0+1\)
b: \(=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)
\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)
=1+1
=2