\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{2.1}\)
Giải hộ mik với, mik cảm ơn nhìu nhé
mọi người giúp mình với: A=\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-...\frac{1}{3.2}-\frac{1}{2.1}\)
Ta có :
\(A=\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(A=-\left(\frac{1}{2003\cdot2002}+\frac{1}{2002\cdot2001}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)
\(A=-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)
\(A=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)
\(A=-\left(1-\frac{1}{2003}\right)\)
\(A=-\frac{2002}{2003}\)
\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)
\(=-\left(1-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)
\(=-1+\frac{1}{2002}.+\frac{1}{2002}.\frac{1}{2003}\)
\(=-1+\frac{1}{2002}\left(1+\frac{1}{2003}\right)\)
\(=-1+\frac{1}{2002}.\frac{2004}{2003}\)
\(=-1+\frac{2}{2003}\)
\(=\frac{-2003+2}{2003}\)
\(=\frac{-2001}{2003}\)
Tính: A=\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-....-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{2003.2002}+\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{2003}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2001}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{2003}-1\right)=-\left(-\frac{2002}{2003}\right)=\frac{2002}{2003}\)
Vậy ....
\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-........-\frac{1}{2.1}\)
\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{2.1}\)
\(=\frac{1}{2003.2002}-\left(\frac{1}{1.2}+\frac{1}{3.2}+...+\frac{1}{2001.2002}\right)\)
\(=\frac{1}{2003.2002}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\right)\)
\(=\frac{1}{2003.2002}-\left(1-\frac{1}{2002}\right)\)
\(=\frac{1}{2003.2002}-\frac{2001}{2002}\)
Tính
\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-...-\frac{1}{2.3}-\frac{1}{2.1}\)
giúp mình với nha
Bạn tham khảo ở lcik này ! Mình mới trả lời ở đó !
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/228829251573.html
1\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-......-\frac{1}{1.2}\)
1/2003.2002 - 1/2002.2001 - . . . - 1/3.2 - 1/2.1
\(\dfrac{1}{2003.2002}-\dfrac{1}{2002.2001}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002.2001}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
= \(\dfrac{1}{2003.2002}-\left(\dfrac{1}{2002}-\dfrac{1}{2001}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)
= \(\dfrac{1}{2003.2002}-\dfrac{1}{2002}+1\)
= \(\dfrac{1-2003+2003.2002}{2003.2002}\)
= \(1-\dfrac{2002}{2003.2002}=1-\dfrac{1}{2003}\) = \(\dfrac{2002}{2003}\)
-1/2003.2002-1/2002.2001-1/2001.2000-...-1/3.2-1/2.1
\(-\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-\frac{1}{2001\cdot2000}-...-\frac{1}{2\cdot1}\)
\(=-1\left(\frac{1}{1\cdot2}+...+\frac{1}{2000\cdot2001}+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)
\(=-1\left(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)
\(=-1\left(1-\frac{1}{2003}\right)\)
\(=-1\left(\frac{2003}{2003}-\frac{1}{2003}\right)\)
\(=-1\cdot\frac{2002}{2003}\)
\(=-\frac{2002}{2003}\)
Tính: a) \(B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+....+\frac{1}{5^{100}}\)
GIÚP MIK VS MIK ĐANG CẦN GẤP.CHI TIẾT HỘ MIK NHÉ, CẢM ƠN!!!
\(B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(\Rightarrow5B-B=5-\frac{1}{5^{100}}\)
\(\Rightarrow B=\frac{5-\frac{1}{5^{100}}}{4}\)
\(B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(5B=1+5+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5B-B=\left(1+5+\frac{1}{5}+...+\frac{1}{5^{99}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{100}}\right)\)
\(4B=5-\frac{1}{5^{100}}\)
\(B=\frac{5-\frac{1}{5^{100}}}{4}\)
hok tốt!!
Trả lời:
\(B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^{99}}\)
\(\Rightarrow5B-B=\left(5+1+\frac{1}{5}+...+\frac{1}{5^{99}}\right)\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{100}}\right)\)
\(\Leftrightarrow4B=5+1+\frac{1}{5}+...+\frac{1}{5^{99}}+1-\frac{1}{5}-\frac{1}{5^2}-...-\frac{1}{5^{100}}\)
\(\Leftrightarrow\frac{4}{5}B=\left(5-\frac{1}{5^{100}}\right)+\left(1-1\right)+...+\left(\frac{1}{5^{99}}-\frac{1}{5^{99}}\right)\)
\(\Leftrightarrow4B=5-\frac{1}{5^{100}}+0+...+0\)
\(\Leftrightarrow4B=5-\frac{1}{5^{100}}\)
\(\Leftrightarrow B=\left(5-\frac{1}{5^{100}}\right):4\)
Vậy\(B=\frac{5-\frac{1}{5^{100}}}{4}\)
P/s: Bài còn sai sót gì thì mong các bạn thông cảm và chỉ ra lỗi sai.
Hok tốt!
Good girl
4.2^5 : ( 2^3.1/16)
3^2*2^5 * (2/3)^2
(1/3)^2.1/3.9^2
CÁC BẠN GIẢI GIÚP MIK VỚI NHÉ. MÌNH ĐAG CẦN GẤP LẮM. CẢM ƠN M.N NHÌU ^^
MIK CẦN 1 LỜI GIẢI CỤ THỂ NHÉ
cutecuteo mik cần lời giải cụ thể bạn ạ