Những câu hỏi liên quan
NA
Xem chi tiết
BC
2 tháng 8 2015 lúc 19:50

ta có \(2^{30}=\left(2^3\right)^{10}=8^{10}\)

        \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

        \(4^{30}=\left(4^3\right)^{10}=64^{10}\)

   ta có       \(3^{20}=\left(3^2\right)^{10}=9^{10}\)

                  \(6^{20}=\left(6^2\right)^{10}=36^{10}\)

                   \(8^{20}=\left(8^2\right)^{10}=64^{10}\)

              \(\Rightarrow2^{30}+3^{30}+4^{30}=8^{10}+27^{10}+64^{10}\)

            \(\Rightarrow3^{20}+6^{20}+8^{20}=9^{10}+36^{10}+64^{10}\)

       Xét        \(8^{10}

Bình luận (0)
ND
24 tháng 9 2024 lúc 17:51

So sánh 2^20+3^30+4^30 và3.24^10

Bình luận (0)
TK
Xem chi tiết
LH
28 tháng 7 2016 lúc 10:41

Ta có :

​​ 230 + 330 + 430

         = (23)10 + (33)10 + (43)10

         = 810 + 2710 + 6410

   320 + 620 + 820​​

         = ( 32)10 + (62)10 + (82)10

         = 910 + 3610 + 6410

Ta thấy: 810 + 2710 + 6410 < 910 + 3610 + 6410

\(\Rightarrow\) 230 + 330 + 430 < 320 + 620 + 820

Bình luận (0)
NM
Xem chi tiết
NN
13 tháng 9 2020 lúc 8:42

Ta có: \(2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}=8^{10}+27^{10}+64^{10}\)

\(3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(8^2\right)^{10}=9^{10}+36^{10}+64^{10}\)

Vì \(8< 9\)\(\Rightarrow8^{10}< 9^{10}\)

mà \(27< 36\)\(\Rightarrow27^{10}< 36^{10}\)

\(\Rightarrow8^{10}+27^{10}< 9^{10}+36^{10}\)

\(\Rightarrow8^{10}+27^{10}+64^{10}< 9^{10}+36^{10}+64^{10}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

Bình luận (0)
 Khách vãng lai đã xóa
VP
13 tháng 9 2020 lúc 8:54

so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
KN
28 tháng 6 2019 lúc 5:54

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

Bình luận (0)
KN
28 tháng 6 2019 lúc 6:00

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

Bình luận (0)
KN
28 tháng 6 2019 lúc 6:50

b) Ta có: \(4^{30}=2^{30}.2^{30}=8^{10}.4^{15}\)

\(3.24^{10}=3.8^{10}.3^{10}=3^{11}.8^{10}\)

Vì \(4^{15}>3^{11}\) nên \(8^{10}.4^{15}>3^{11}.8^{10}\)

hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)

Bình luận (0)
LQ
Xem chi tiết
LQ
27 tháng 7 2018 lúc 11:27

cứu tui 

Bình luận (0)
NP
27 tháng 7 2018 lúc 11:57

Ta có:\(2^{30}=\left(2^3\right)^{10}=8^{10}< 9^{10}=\left(3^2\right)^{10}=3^{20}\)

\(3^{30}=3^{20}.3^{10}< 3^{20}.4^{10}=3^{20}.\left(2^2\right)^{10}=3^{20}.2^{20}=\left(3.2\right)^{20}=6^{20}\)

\(4^{30}=4^{20}.4^{10}=4^{20}.\left(2^2\right)^{10}=4^{20}.2^{20}=\left(4.2\right)^{20}=8^{20}\)

nên \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

Bình luận (0)
H24
27 tháng 7 2018 lúc 12:07

Ta có : x=230 + 330 + 430

x=23.10 + 33.10 + 43.10

x=(23)20 + (33)10 + (43)10

x=820 + 910 + 6410

y=320 + 620 + 820

y=32.10 + 62.10 + 82.10

y=(32)10 + (62)10 + (82)10

y=910 + 3610 + 6410

mà 910 > 820 ;3610 >910 ;6410 = 6410

nên x<y

Bình luận (0)
OY
Xem chi tiết
TH
12 tháng 10 2021 lúc 21:53

So sánh:

a) 5^300 và 3^500

b) (-16)^11 và (-32)^9

c) (2^2)^3 và 2^2^3

d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20

e) 4^30 và 3×24^10

g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51

Bình luận (0)
 Khách vãng lai đã xóa
N1
Xem chi tiết