FP

So sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20

KN
13 tháng 9 2020 lúc 8:52

Xét \(A=2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(2^2\right)^{30}=8^{10}+27^{10}+2^{60}\)

\(B=3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(2^3\right)^{20}=9^{10}+36^{10}+2^{60}\)

Vì \(8^{10}< 9^{10},27^{10}< 36^{10}\)nên A<B

Bình luận (0)
 Khách vãng lai đã xóa

230 = 23.10= 810

330=33.10=2710

430=43.10=6410

Vế trái = 810 + 2710 + 6410

320=32.10=910

620=62.10=3610

820=82.10=6410

vế phải = 910 + 3610 + 6410

Vì 6410=6410 ; 3610 > 2710 ; 910 > 810

=> vế phải > vế trái

Bình luận (0)
 Khách vãng lai đã xóa
VP
13 tháng 9 2020 lúc 8:54

so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20

Bình luận (0)
 Khách vãng lai đã xóa
ND
13 tháng 9 2020 lúc 8:54

Ta có \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10};27^{10}< 36^{10};2^{60}=2^{60}\)

\(\Rightarrow8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

\(\Rightarrow2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
LQ
Xem chi tiết
KR
Xem chi tiết
VL
Xem chi tiết
NT
Xem chi tiết