Những câu hỏi liên quan
HA
Xem chi tiết
DD
8 tháng 5 2017 lúc 7:26

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

Bình luận (0)
NT
8 tháng 5 2017 lúc 17:06

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

Bình luận (0)
MN
Xem chi tiết
QT
Xem chi tiết
NT
Xem chi tiết
H24
16 tháng 4 2019 lúc 23:04

\(b,\frac{x+5}{6}+\frac{x-1}{3}\le\frac{x+3}{2}-1.\)

\(\Rightarrow\frac{x+5}{6}+\frac{2\left(x-1\right)}{6}\le\frac{x+3}{2}-1\)

\(\Rightarrow\frac{x+5}{6}+\frac{2x-2}{6}\le\frac{x+3}{2}-1\)

\(\Rightarrow\frac{x+5+2x-2}{6}\le\frac{x+3}{2}-1\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3\left(x+3\right)}{6}-\frac{6}{6}\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9}{6}-\frac{6}{6}\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9-6}{6}\)

\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+3}{6}\)

\(\Rightarrow3x+3\le3x+3\)

\(\Rightarrow S=\varnothing\)

Bình luận (0)
PG
Xem chi tiết
H24
29 tháng 7 2019 lúc 21:33

Mình giải thử thôi nha

\(\frac{\left(2x-1\right)^2}{2}-\frac{\left(1-3x\right)^2}{3}\le x\left(2-x\right)\)

\(\Leftrightarrow3\left(2x-1\right)^2-2\left(1-3x\right)^2\le6x\left(2-x\right)\)

\(\Leftrightarrow12x^2-12x+3-2+12x-18x^2\le12x-6x^2\)

\(\Leftrightarrow-6x^2+1\le12x-6x^2\)

\(\Leftrightarrow1\le12x\)

\(\Leftrightarrow\frac{1}{12}\le x\)

\(\Rightarrow x\ge\frac{1}{12}\)

Bình luận (0)
HT
Xem chi tiết
TL
Xem chi tiết
TL
26 tháng 3 2020 lúc 8:32

giúp mik vs

Bình luận (0)
 Khách vãng lai đã xóa
EC
26 tháng 3 2020 lúc 9:42

a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)

<=> \(9-6x>10-5x\)

<=> 9 - 10 > -5x + 6x

<=> x < -1

Vậy nghiệm của bất phương trình là x < -1

b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)

<=> \(x-1-2x+2\le3x\)

<=> \(-x+1\le3x\)

<=> \(1\le2x\)

<=> x \(\ge\frac{1}{2}\)

Vậy nghiệm của bất phương trình là x > = 1/2

c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)

<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)

<=> 2x + 1 > 2x - 13

<=> 1 > -13 (luôn đúng)

Vậy nghiệm của bất phương trình luôn đúng với mọi x 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HM
22 tháng 8 2023 lúc 12:13

\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)

Bình luận (0)
HM
22 tháng 8 2023 lúc 12:16

d, Điều kiện: x > 1

\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)

e, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)

f, Điều kiện: x > 4

\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)

Bình luận (0)
MK
Xem chi tiết
TK
6 tháng 3 2020 lúc 7:36

\(\Leftrightarrow x-1-\frac{x-1}{3}-\frac{2x+3}{2}-\frac{x}{3}+1\le0\)

\(\Leftrightarrow x-\frac{x-1}{3}-\frac{2x+3}{2}-\frac{x}{3}\le0\)

\(\Leftrightarrow\frac{6x}{6}-\frac{2x-2}{6}-\frac{6x+9}{6}-\frac{2x}{6}\le0\)

\(\Leftrightarrow6x-2x+2-6x-9-2x\le0\)

\(\Leftrightarrow-4x-7\le0\Leftrightarrow4x+7\ge0\Leftrightarrow x\ge-\frac{7}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa