cho tỉ lệ thức: a+b+c/a+b-c=a-b+c/a-b-c với b khác 0, chứng minh c=0
Cho tỉ lệ thức: ab/bc = b/c với c khác 0
Chứng minh tỉ lệ thức a^2 + b^2/b^2 + c^2 = a/c
Cho tỉ lệ thức: (a + b + c)/ (a + b - c) = (a - b +c)/ (a - b - c) và b khác 0. Chứng minh c=0
ti le thuc nay yeu cau lam j ban
ti le thuc nay yeu cau ta lam j ban
cho tỉ lệ thức a+b+c/a+b-c=a-b+c/a-b-c và b khác 0 .CHỨNG minh c=0
vì chỉ khi c=0 thì biểu thức trên mới hợp lệ
Cho tỉ lệ thức a/b = c/d khác 1. Với a, b, c, d khác 0.
Chứng minh: a-b/a=c-d/c
đặt a/b=c/d=k
=>a=bk ; c=dk
=>a-b/a=bk-b/bk=b(k-1)/bk=k-1/k
c-d/c=dk-d/dk=d(k-1)/dk=k-1/k
vậy a-b/b=c-d/c ( vì cùng bằng k-1/k)
ta có:a/b=c/d
=>a/c=b/d
áp dụng tích chất dãy tỉ số bằng nhau ta có:
a/c=b/d=a+b/c+d=a-c/c-d
=>a+b/c+d=a-b/c-d
do đó: a+b/a-c=c+d/c-d
Chứng minh từ tỉ lệ thức a/b=c/d thì ta suy ra được các tỉ lệ thức sau:
a+b/b=c+d/d; a-b/b=c-d/d và a/a+b=c/c+d (với a+b khác 0, c+d khác 0
\(\frac{a+b}{b}=1\frac{a}{b}\)
\(\frac{c+d}{d}=1\frac{c}{d}\)
Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\RightarrowĐPCM\)
\({a \over b}={c \over d} => ad=bc \)
\({a+b \over b}={c+d \over d} \) chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)
mấy câu sau làm tương tự chủ yếu là nhân chéo
Cho tỉ lệ thức:
a+b+c/a+b-c = a-b+c/a-b-c (b khác 0). Chứng minh c=0
Cho tỉ lệ thức a+b+c/a+b-c = a-b+c/ a-b-c ( b khác 0). Chứng minh rằng c=0
Theo tính chất tỉ lệ thức :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\) (1)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}\) (2)
Từ (1) và (2) => \(\frac{a+c}{a-c}=1\)
=> a + c = a - c
=> 2c = 0
=> c = 0
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức a+b/a-b = c + d/c-d
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5