Những câu hỏi liên quan
H24
Xem chi tiết
EC
19 tháng 8 2020 lúc 21:58

g) G =  x2 + 6x + 4y2 - 10y + 5

G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25

G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25

Bình luận (0)
 Khách vãng lai đã xóa
EC
19 tháng 8 2020 lúc 22:00

h) H = -2x2 - 6x - 3y2 + 12y - 8

H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5 

H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)

vậy MaxH = 8,5 khi  x = -1,5 và y = 2

Bình luận (0)
 Khách vãng lai đã xóa
LD
19 tháng 8 2020 lúc 22:04

G = x2 + 6x + 4y2 - 10y + 5

G = ( x2 + 6x + 9 ) + ( 4y2 - 10y + 25/4 ) - 41/4

G = ( x + 3 )2 + ( 2y - 5/2 )2 - 41/4

\(\hept{\begin{cases}\left(x+3\right)^2\ge0\forall x\\\left(2y-\frac{5}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+3=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=\frac{5}{4}\end{cases}}\)

=> MinG = -41/4 <=> x = -3 ; y = 5/4

H = -2x2 - 6x - 3y2 + 12y - 8

H = -2( x2 + 3x + 9/4 ) - 3( y2 - 4y + 4 ) + 17/2

H = -2( x + 3/2 )2 - 3( y - 2 )2 + 17/2

\(\hept{\begin{cases}-2\left(x+\frac{3}{2}\right)^2\le0\forall x\\-3\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-2\left(x+\frac{3}{2}\right)-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{3}{2}=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)

=> MaxH = 17/2 <=> x = -3/2 ; y = 2

I = \(\frac{6}{x^2-6x+30}\)

Để I đạt GTLN => \(x^2-6x+30\)đạt GTNN

Ta có : x2 - 6x + 30 = ( x2 - 6x + 9 ) + 21 = ( x - 3 )2 + 21 ≥ 21 ∀ x

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxI = \(\frac{6}{3^2-6\cdot3+30}=\frac{6}{21}=\frac{2}{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KN
22 tháng 8 2020 lúc 19:15

a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)

Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)

Vậy Amin = 8 - 11 = - 3 <=> x = 0

b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)

Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)

mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\)  <=> x = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LD
20 tháng 8 2020 lúc 7:35

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)

Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN

=> \(\left(x+1\right)^2+3\)(*) đạt GTNN

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)

=> Min(*) = 3 <=> x + 1 = 0 => x = -1

=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1

Mình không chắc nha -.-

Bình luận (0)
 Khách vãng lai đã xóa
PN
20 tháng 8 2020 lúc 7:43

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)

Để M đạt GTLN  => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN 

Hay \(x^2+2x+4\)(*) đạt GTNN 

Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)

Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)

Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1

Suy ra GTLN (**) = 52/3 khi x = -1

Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
19 tháng 8 2020 lúc 21:06

a) \(A=x^2-10x+5\)

\(A=x^2-10x+25-20\)

\(A=\left(x-5\right)^2-20\ge-20\)

Min A = -20 \(\Leftrightarrow x=5\)

b) \(B=3x^2-6x+11\)

\(B=3\left(x^2-2x+1\right)+8\)

\(B=3\left(x-1\right)^2+8\ge8\)

Min B = 8\(\Leftrightarrow x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
19 tháng 8 2020 lúc 21:09

a) \(A=x^2-10x+5=\left(x^2-10x+25\right)-20\)

\(=\left(x-5\right)^2-20\ge-20\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-5\right)^2=0\Rightarrow x=5\)

Vậy \(Min_A=-20\Leftrightarrow x=5\)

b) \(B=3x^2-6x+11=3\left(x^2-2x+1\right)+8\)

\(=3\left(x-1\right)^2+8\ge8\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min_B=8\Leftrightarrow x=1\)

c) \(C=8x^2+10x-30=8\left(x^2-\frac{5}{4}x+\frac{25}{64}\right)-\frac{265}{8}\)

\(=8\left(x-\frac{5}{8}\right)^2-\frac{265}{8}\ge-\frac{265}{8}\)

Dấu "=" xảy ra khi: \(\left(x-\frac{5}{8}\right)^2=0\Rightarrow x=\frac{5}{8}\)

Vậy \(Min_C=-\frac{265}{8}\Leftrightarrow x=\frac{5}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
19 tháng 8 2020 lúc 21:09

A = x2 - 10x + 5

A = ( x2 - 10x + 25 ) - 20

A = ( x - 5 )2 - 20

( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 20 ≥ -20

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MinA = -20 <=> x = 5

b) B = 3x2 - 6x + 11

B = 3( x2 - 2x + 1 ) + 8

B = 3( x - 1 )2 + 8

3( x - 1 )2 ≥ 0 ∀ x => 3( x - 1 )2 + 8 ≥ 8

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinB = 8 <=> x = 1

C = 8x2 + 10x - 30

C = 8( x2 + 5/4x + 25/64 ) - 265/8

C = 8( x + 5/8 )2 - 265/8

8( x + 5/8 )2 ≥ 0 ∀ x => 8( x + 5/8 )2 - 265/8 ≥ -265/8

Đẳng thức xảy ra <=> x + 5/8 = 0 => x = -5/8

=> MinC = -265/8 <=> x = -5/8

Bình luận (0)
 Khách vãng lai đã xóa
BD
Xem chi tiết
H24
18 tháng 3 2021 lúc 21:53

+) Giá trị nhỏ nhất

Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{-\left(x^2+1\right)+x^2+6x+9}{x^2+1}\) \(=-1+\dfrac{\left(x+3\right)^2}{x^2+1}\ge-1\)

  Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

+) Giá trị lớn nhất 

Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{9\left(x^2+1\right)-9x^2+6x-1}{x^2+1}\) \(=9-\dfrac{\left(3x-1\right)^2}{x^2+1}\ge9\)

  Dấu bằng xảy ra \(\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

  Vậy \(P_{Min}=-1\) khi \(x=-3\)

         \(P_{Max}=9\) \(\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (0)
DN
Xem chi tiết
DN
27 tháng 12 2022 lúc 22:52

mn ơi giúp mik với, mik cần gấp á, cảm ơn mn nhìuuu 

Bình luận (0)
TJ
Xem chi tiết
H24
Xem chi tiết
NM
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

Bình luận (0)
H24
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

Bình luận (0)
ND
6 tháng 1 lúc 13:45

um


Bình luận (0)
H24
Xem chi tiết