Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có thể):
i, \(I = \dfrac{6}{x^2-6x+30}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có thể):
g, \(G = x^2 + 6x + 4y^2 - 10y + 5\)
h,\(H = -2x^2 - 6x - 3y^2 + 12y - 8\)
i, \(I = \dfrac{6}{x^2-6x+30}\)
g) G = x2 + 6x + 4y2 - 10y + 5
G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25
G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25
h) H = -2x2 - 6x - 3y2 + 12y - 8
H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5
H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)
vậy MaxH = 8,5 khi x = -1,5 và y = 2
G = x2 + 6x + 4y2 - 10y + 5
G = ( x2 + 6x + 9 ) + ( 4y2 - 10y + 25/4 ) - 41/4
G = ( x + 3 )2 + ( 2y - 5/2 )2 - 41/4
\(\hept{\begin{cases}\left(x+3\right)^2\ge0\forall x\\\left(2y-\frac{5}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+3=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=\frac{5}{4}\end{cases}}\)
=> MinG = -41/4 <=> x = -3 ; y = 5/4
H = -2x2 - 6x - 3y2 + 12y - 8
H = -2( x2 + 3x + 9/4 ) - 3( y2 - 4y + 4 ) + 17/2
H = -2( x + 3/2 )2 - 3( y - 2 )2 + 17/2
\(\hept{\begin{cases}-2\left(x+\frac{3}{2}\right)^2\le0\forall x\\-3\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-2\left(x+\frac{3}{2}\right)-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{3}{2}=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)
=> MaxH = 17/2 <=> x = -3/2 ; y = 2
I = \(\frac{6}{x^2-6x+30}\)
Để I đạt GTLN => \(x^2-6x+30\)đạt GTNN
Ta có : x2 - 6x + 30 = ( x2 - 6x + 9 ) + 21 = ( x - 3 )2 + 21 ≥ 21 ∀ x
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxI = \(\frac{6}{3^2-6\cdot3+30}=\frac{6}{21}=\frac{2}{7}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất: (nếu có thể)
\(A=\dfrac{8x^2-9}{x^2+3}\)
\(B=\dfrac{3x^2-6x+40}{x^2-2x+5}\)
a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)
Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)
Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)
Vậy Amin = 8 - 11 = - 3 <=> x = 0
b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)
Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)
mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\) <=> x = 1
Tìm giá trị lớn nhất, giá trị nhỏ nhất: (nếu có thể)
\(M=\dfrac{2x^2+4x+60}{x^2+2x+4}\)
\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)
Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN
=> \(\left(x+1\right)^2+3\)(*) đạt GTNN
\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)
=> Min(*) = 3 <=> x + 1 = 0 => x = -1
=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1
Mình không chắc nha -.-
\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)
Để M đạt GTLN => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN
Hay \(x^2+2x+4\)(*) đạt GTNN
Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)
Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)
Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1
Suy ra GTLN (**) = 52/3 khi x = -1
Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1
Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có thể):
a, \(A=x^2-10x+5\)
b, \(B=3x^2-6x+11 \)
c, \(C=8x^2+10x-30\)
a) \(A=x^2-10x+5\)
\(A=x^2-10x+25-20\)
\(A=\left(x-5\right)^2-20\ge-20\)
Min A = -20 \(\Leftrightarrow x=5\)
b) \(B=3x^2-6x+11\)
\(B=3\left(x^2-2x+1\right)+8\)
\(B=3\left(x-1\right)^2+8\ge8\)
Min B = 8\(\Leftrightarrow x=1\)
a) \(A=x^2-10x+5=\left(x^2-10x+25\right)-20\)
\(=\left(x-5\right)^2-20\ge-20\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy \(Min_A=-20\Leftrightarrow x=5\)
b) \(B=3x^2-6x+11=3\left(x^2-2x+1\right)+8\)
\(=3\left(x-1\right)^2+8\ge8\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=8\Leftrightarrow x=1\)
c) \(C=8x^2+10x-30=8\left(x^2-\frac{5}{4}x+\frac{25}{64}\right)-\frac{265}{8}\)
\(=8\left(x-\frac{5}{8}\right)^2-\frac{265}{8}\ge-\frac{265}{8}\)
Dấu "=" xảy ra khi: \(\left(x-\frac{5}{8}\right)^2=0\Rightarrow x=\frac{5}{8}\)
Vậy \(Min_C=-\frac{265}{8}\Leftrightarrow x=\frac{5}{8}\)
A = x2 - 10x + 5
A = ( x2 - 10x + 25 ) - 20
A = ( x - 5 )2 - 20
( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 20 ≥ -20
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MinA = -20 <=> x = 5
b) B = 3x2 - 6x + 11
B = 3( x2 - 2x + 1 ) + 8
B = 3( x - 1 )2 + 8
3( x - 1 )2 ≥ 0 ∀ x => 3( x - 1 )2 + 8 ≥ 8
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 8 <=> x = 1
C = 8x2 + 10x - 30
C = 8( x2 + 5/4x + 25/64 ) - 265/8
C = 8( x + 5/8 )2 - 265/8
8( x + 5/8 )2 ≥ 0 ∀ x => 8( x + 5/8 )2 - 265/8 ≥ -265/8
Đẳng thức xảy ra <=> x + 5/8 = 0 => x = -5/8
=> MinC = -265/8 <=> x = -5/8
tìm giá trị lớn nhất và nhỏ nhất của biểu thức A = \(\dfrac{6x+8}{x^2+1}\)
+) Giá trị nhỏ nhất
Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{-\left(x^2+1\right)+x^2+6x+9}{x^2+1}\) \(=-1+\dfrac{\left(x+3\right)^2}{x^2+1}\ge-1\)
Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
+) Giá trị lớn nhất
Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{9\left(x^2+1\right)-9x^2+6x-1}{x^2+1}\) \(=9-\dfrac{\left(3x-1\right)^2}{x^2+1}\ge9\)
Dấu bằng xảy ra \(\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(P_{Min}=-1\) khi \(x=-3\)
\(P_{Max}=9\) \(\Leftrightarrow x=\dfrac{1}{3}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có) của biểu thức sau
H=\(\dfrac{1}{5-\left|x-3\right|}\)
mn ơi giúp mik với, mik cần gấp á, cảm ơn mn nhìuuu
a, Tìm x để A nhận giá trị lớn nhất, tìm giá trị lớn nhất để A = 1001 - I x+9 I
b, Tìm x để B nhận giá trị nhỏ nhất , tìm giá trị nhỏ nhất để B = I x-2I + 34
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)