Cho x+y=3, x.y=2
Tính x^2+y^2; x^3+y^3; x^4+y^4; x^5+y^5; x^6+y^6 ?
Cho x,y là các số thực dương thỏa mãn: (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=2
Tính Q= \(x\sqrt{y^2+1}\)+y\(\sqrt{x^2+1}\)
Lời giải:
$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$
$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$
$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$
$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$
$\Leftrightarrow 4Q=3$
$\Leftrightarrow Q=\frac{3}{4}$
cho x+y=101. Tính giá trị biểu thức:
x^3-3.x^2+3.x^2.y+3.x.y^2+y^3-3.y^2-6.x.y+3.x+3.y+2012
= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012
= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012
= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012
= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012
= 1013 - 3.1012 + 3.101 + 2012
= 1002013
Cho y= \(\left\{{}\begin{matrix}x+1\\x^2-2\end{matrix}\right.\)
x+1 với x≥2
x2 - 2 với x <2
tính giá trị của hàm số khi x=3, x=-1,x=2
\(x=3\ge2\Leftrightarrow y=3+1=4\\ x=-1< 2\Leftrightarrow y=\left(-1\right)^2-2=1-2=-1\\ x=2\ge2\Leftrightarrow y=2+1=3\)
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0
Tìm x: a) (x+1)^3-x(x-2)^+x-1=0
b) (x-1)^3 - (x+3)(x^2-3x+9)+3(x^2-4)=2
Tính: (căn 2 x - y^2)
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
Tìm nghiệm nguyên của phương trình :
1, x^2 - x.y + y^2=2.x - 3.y - 2
2, 2.x.y +2.x +y +1 >= ( lớn hơn hoặc bằng ) 4.x^2 + y^2
3. 2.x^2 + y^2 -2.x.y +y=0
4. x^2 + y^2 + x.y - 2.x - y =0
Tìm x, y biết
a. x.y+3.x - 7.y =21
b. x.y+3.x - 2.y =11
c. x.y - 2.y + 3.x =14
d. 4.y - 3.x + x.y =16
b) \(xy+3x-2y=11\)
\(xy+3x-2y-6=11-6\)
\(xy+3x-2y-6=5\)
\(\left(xy+3x\right)-\left(2y+6\right)=5\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow5=\left(-1\right)\left(-5\right)=1\cdot5\)
Bạn tự lập bảng mà thử nghiệm nhé
a) \(xy+3x-7y=21\)
\(xy+3x-7y-21=21-21\)
\(xy+3x-7y-21=0\)
\(\left(xy+3x\right)-\left(7y+21\right)=0\)
\(x\left(y+3\right)-7\left(y+3\right)=0\)
\(\left(x-7\right)\left(y+3\right)=0\)
\(\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)
1. Biết x+y=3 ; x.y=1. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
2. Biết x+y=4 ; x.y=2. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
Tìm x,y thuộc Z
a) x^2 +3.x.y+3.y^2=3.y
b) x^2 -2.x.y -5.y^2=y+1
Câu 1: Tìm các số nguyên x,y sao cho :
a/ x.y = -5
b/ x.y= -5 và x > y
c/ (x+1)(y-2)= -5
Câu 2: Tìm các số nguyên x,y sao cho :
a/ x.y = -3
b/ x.y= -3 và x < y
c/ (x-1)(y+1)= -3
Câu 3: Tìm các số nguyên x,y sao cho :
a/ x.y= -7
b/x.y=-7 và x<y
c/ (x-5).(y+4) = -7
Mình cần gấp!!!
Ai giải sớm mk tick cho ạh :333
Cảm ơn...
câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)
b) xy=-5 với x>y=>x=1,y=-5
c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5 => x=-1, y=-3
* x+1=-5 và y-2=1=> x=-6 , y=3
câu 2 , câu 3 tương tự