Tìm a,b,c biết a/3=b/5=c/7 và a-b+c=-10
tìm 3 số a; b; c biết a/3 = b/5 = c/7 và a + b - c = 10
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
\(\frac{a}{3}=10\Leftrightarrow a=30\)
\(\frac{b}{5}=10\Leftrightarrow b=50\)
\(\frac{c}{7}=10\Leftrightarrow c=70\)
Vậy a = 30 ; b = 50 ; c = 70
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) va a+b-c=10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
Suy ra : \(\frac{a}{3}=10\Rightarrow a=10.3=30\)
\(\frac{b}{5}=10\Rightarrow b=5.10=50\)
\(\frac{c}{7}=10\Rightarrow c=7.10=70\)
Vậy : x=30 ; y=50 và z=70
dich duong thien ty giúp tôi đc ko
Tìm các số a, b,c biết a: b: c= 3:5:7 và a+ b+ c= 10
a:b:c=3:5:7=>a/3=b/5=c/7
Áp dụng t/c dãy tỉ số = nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{10}{15}=\frac{2}{3}\)
=>a=2/3.3=2
b=2/3.5=10/3
c=2/3.7=14/3
Vì a:b:c=3:5:7
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{10}{15}=\frac{2}{3}\)
=>\(\frac{a}{3}=\frac{2}{3}\)=>a=2
\(\frac{b}{5}=\frac{2}{3}\)=>\(b=\frac{10}{3}\)
\(\frac{c}{7}=\frac{2}{3}\)=>\(c=\frac{14}{3}\)
ta có:a/3=b/5=c/7 và a+b+c=10
áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/3=b/5=c/7=a+b+c/3+5+7=10/15=2/3
a/3=2/3=>a=3.2/3=6/3=2
b/5=2/3=>b=5.2/3=10/3
c/7=2/3=>c=7.2/3=14/3
vậy: a=2;b=10/3;c=14/3
chúc bn học tốt.
Tìm các số a,b,c biết a/b/c=3/5/7 và a+b-c=10
tìm các số a,b,c biết a/b/c=3/5/7 và a+b-c=10
Giải:
Ta có: \(\frac{a}{\frac{b}{c}}=\frac{3}{\frac{5}{7}}\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3-5+7}=\frac{10}{5}=2\)
+) \(\frac{a}{3}=2\Rightarrow a=6\)
+) \(\frac{b}{5}=2\Rightarrow b=10\)
+) \(\frac{c}{7}=2\Rightarrow c=14\)
Vậy a = 6, b = 10, c = 14
Bài 4: tìm 3 số a,b,c biết : a/5=b/7=c/10 và 2a+3b-4c=-81
Bài 5 : tìm y
a,y/4=9/y
b, y+7/20=5/y+7
c, 4-5y/3=y+2/5
Nhanhhh tickkkkkk
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
Đính chính Bài 4 :
\(...\dfrac{2a+3b-4c}{10+21-40}=\dfrac{-81}{-9}=9\)
\(\Rightarrow\left\{{}\begin{matrix}a=9.4=36\\b=9.7=63\\c=9.10=90\end{matrix}\right.\)
Tìm các số a,b,c biết: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a+ b - c = 10
Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
Mà a + b - c = 10
=> \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
Vậy a = 10 x 3 = 30
b = 10 x 5 = 50
c = 10 x 7 = 70
CHÚC BẠN HỌC TỐT
Áp dụng tính chất tỉ lệ thức ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
Khi đó: \(\frac{a}{3}=10\Rightarrow a=10\times3\Rightarrow a=30\)\(;\)\(\frac{b}{5}=10\Rightarrow b=10\times5\Rightarrow b=50\)\(;\)\(\frac{c}{7}=10\Rightarrow c=10\times7\Rightarrow c=70\)
ADTCCDTSBN ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=10\\\frac{b}{5}=10\\\frac{c}{7}=10\end{cases}\Rightarrow}\hept{\begin{cases}a=30\\b=50\\c=70\end{cases}}\)
Tìm a,b,c biết a-b/10 = b+c/5; a+b/7 = b-c/-8 và a-2b+c = 36
Tìm a,b,c biết a-b/10= b+c/5; a+b/7= c-b/8
và a-2b +c =36
(a,b,c)=(15,35,45) bạn nhé
sử dụng phương pháp đặt k