Tính giá trị biểu thức:
D=(y-1)(y-2)(f+y+y2)(4+2y+y2),vớiy=1
Tính giá trị của biểu thức sau: a) P = (x2 + 4xy + 4y2 ) – 2(x + 2y)(y – 1) + (y2 – 2y + 1) với x + y = 10 b) Q = (x + y)2 + 4(x – y)2 = 4(x – y)(x + y) với x = 3y
c) M = x3 + y 3 + 3xy với x + y = 1
d) N = x 3 + y 3 với x + y = 2 và x 2 + y2 = 10
\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)
Tính giá trị của biểu thức A = x 2 - y 2 + 2 y - 1 với x=3 và y=1.
A. A = - 9.
B. A = 0.
C. A = 9.
D. A = - 1.
Tính giá trị của biểu thức P = x 2 + y 2 - x y + 1 biết rằng 4 x 2 + 1 x 2 - 1 = log 2 14 - y - 2 y + 1 với x ≠ 0 ; - 1 ≤ y ≤ 13 2 .
A. P = 4
B. P = 2
C. P = 1
D. P = 3
Đáp án B
Ta có x 2 + 1 x 2 - 1 ≥ 2 x 2 . 1 x 2 - 1 = 1 ⇒ 4 x 2 + 1 x 2 - 1 ≥ 4 14 - y - 2 y + 1 ≤ 16 ⇒ log 2 14 - y - 2 y + 1 ≤ 4
Theo giả thiết 4 x 2 + 1 x 2 - 1 = log 2 14 - y - 2 y + 1 ⇒ x 2 = 1 x 2 y = 0 ⇔ x 2 = 1 y = 0
Vậy giá trị biểu thức P = x 2 + y 2 - x y + 1 = 2 .
Cho x+y=4 và x2+y2=10. Tính giá trị của biểu thức M=x6+y6
Cho 8x3-32y-32x2y+8x=0 và y khác 0. Tính giá trị của biểu thức M=3x+2y/3x-2y
Cho x2-5x+1=0 . Tính giá trị của biểu thức M=x4+x21/2x2
Giải giúp mình với!!!
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Bài cuối $x^21$ không rõ. Bạn xem lại.
Bài 6: Cho biểu thứ M = x2 – 2y + 3xy. Tính giá trị của M khi x = 2, y = 3
Bài 7: Cho biểu thức P = -x2 - 5xy + 8y2 . Tính giá trị của M tại x = -1 và y = -2
Bài 8: Tính giá trị biểu thức
A = 3x3 y + 6x2y2 + 3xy3 tại
B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 6:
M= 2.2 - 2.3+3.2.3
M= 4 - 6 + 18
M= 20
Bài 7:
P= 1.2 - 5.-1.-2 + 8.-2.2
P = 2 -10 -32
P= -44
Bài 8:
A (thiếu dữ kiện bn ơi)
B= -1.2 . 3.2 + -1.3 +3.3 +-1.3
B= -2 . 6 + -3 + 9 +-3
B= -2 . 6 - 3 + 9 - 3
B= -12 - 3 + 9 - 3
B= -9
Bài 2. Tìm giá trị nhỏ nhất của biểu thức:
D = 2x^2 + y^2 + z^2 − 2xy − 2xz − 2y + 2x + 4
\(D=\left(x^2+z^2-2xz\right)+\left(x^2+y^2-2xy+2x-2y+1\right)+3\)
\(D=\left(x-z\right)^2+\left(x-y+1\right)^2+3\ge3\)
\(D_{min}=3\) khi \(\left\{{}\begin{matrix}x=z\\x=y-1\end{matrix}\right.\)
Tính giá trị biểu thức D = x 2 ( x + y ) - y 2 ( x + y ) + x 2 - y 2 + 2 ( x + y ) + 3 biết rằng x + y + 1 = 0
A. D = 0
B. D = 3
C. D = 2
D. D = 1
Ta có :
D = x 2 ( x + y ) − y 2 ( x + y ) + x 2 − y 2 + 2 ( x + y ) + 3 = ( x + y ) x 2 − y 2 + x 2 − y 2 + 2 ( x + y ) + 2 + 1 = x 2 − y 2 ( x + y + 1 ) + 2 ( x + y + 1 ) + 1 = x 2 − y 2 ⋅ 0 + 2 ⋅ 0 + 1 = 1 tai x + y + 1 = 0
Vậy D = 1 khi x + y + 1 = 0
Chọn đáp án D
Rút gọn và tính giá trị biểu thức sau:
P=[{x-y/2y-x-x2+y2+y-2/x2-xy-2y2}:4x4+4x2y+y2-4/x2+y+xy+x]
LƯU Ý:đây là phân thức đại số nhé
Xét các số thực x, y thỏa mãn x 2 + y 2 ≥ 4 và l o g x 2 + y 2 ( 4 x - 2 y ) ≥ 1 . Giá trị lớn nhất của biểu thức P=3x+4y-5 là với a, b là các số nguyên. Tính T = a 3 + b 3
A. 0
B. 250
C. 152
D. 98