B(4;5;7) là
cho A =a-b/b-c + a+b / a-b và B= a^4 - b^4 / a^4 + b^4 +a^4 + b^4/ a^4 - b^4
tính B theo A a,b khác 0
Cho a^2 \(\ne\)b^2 và M =\(\frac{a+b}{a-b}+\frac{a-b}{a+b}.TínhN=\frac{a^4+b^4}{a^4-b^4}+\frac{a^4-b^4}{a^4+b^4}theoM\)
Cho \(C=\frac{a+b}{a-b}+\frac{a-b}{a+b}\) ; \(D=\frac{a^4+b^4}{a^4-b^4}+\frac{a^4-b^4}{a^4+b^4}\)
Tính D theo C
Cho a+b+c=0 CMR
a) a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)
b) a^4+b^4+c^4= 2(ab+bc+ca)^2
c) a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2
cho 2 số thực a,b thỏa mãn a2 # b2
Đặt A=(a+b) /(a-b) + (a-b)/(a+b). tính B =( a4 + b4)/(a4 - b4) + (a4 - b4) /(a4 + b4) theo A
Chia cả tử và mẫu của các phân số cho a khác 0 ta được:
\(A=\frac{a+b}{a-b}+\frac{a-b}{a+b}=\frac{\frac{a}{b}+1}{\frac{a}{b}-1}+\frac{\frac{a}{b}-1}{\frac{a}{b}+1}=\frac{\left(\frac{a}{b}+1\right)^2+\left(\frac{a}{b}-1\right)^2}{\left(\frac{a}{b}-1\right)\left(\frac{a}{b}+1\right)}=\frac{2.\left(\frac{a}{b}\right)^2+2}{\left(\frac{a}{b}\right)^2-1}\)
\(\Rightarrow A.\left(\frac{a}{b}\right)^2-A=2.\left(\frac{a}{b}\right)^2+2\Rightarrow A.\left(\frac{a}{b}\right)^2-2.\left(\frac{a}{b}\right)^2=A+2\)
\(\Rightarrow\left(A-2\right).\left(\frac{a}{b}\right)^2=A+2\Rightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}\)
ta có: \(B=\frac{\left(\frac{a}{b}\right)^4+1}{\left(\frac{a}{b}\right)^4-1}+\frac{\left(\frac{a}{b}\right)^4-1}{\left(\frac{a}{b}\right)^4+1}\)
\(\Rightarrow B=\frac{\left(\frac{A+2}{A-2}\right)^2+1}{\left(\frac{A+2}{A-2}\right)^2-1}+\frac{\left(\frac{A+2}{A-2}\right)^2-1}{\left(\frac{A+2}{A-2}\right)^2+1}=\frac{\left(A+2\right)^2+\left(A-2\right)^2}{\left(A+2\right)^2-\left(A-2\right)^2}+\frac{\left(A+2\right)^2-\left(A-2\right)^2}{\left(A+2\right)^2+\left(A-2\right)^2}\)
\(\Rightarrow B=\frac{2.A^2+8}{8.A}+\frac{8.A}{2.A^2+8}=\frac{\left(2A^2+8\right)^2+64.A^2}{8.A\left(2A^2+8\right)}=\frac{\left(A^2+4\right)^2+16.A^2}{4.A\left(A^2+4\right)}\)
Chia cả tử và mẫu của các phân số cho a khác 0 ta được:
$A=\frac{a+b}{a-b}+\frac{a-b}{a+b}=\frac{\frac{a}{b}+1}{\frac{a}{b}-1}+\frac{\frac{a}{b}-1}{\frac{a}{b}+1}=\frac{\left(\frac{a}{b}+1\right)^2+\left(\frac{a}{b}-1\right)^2}{\left(\frac{a}{b}-1\right)\left(\frac{a}{b}+1\right)}=\frac{2.\left(\frac{a}{b}\right)^2+2}{\left(\frac{a}{b}\right)^2-1}$A=a+ba−b +a−ba+b =ab +1ab −1 +ab −1ab +1 =(ab +1)2+(ab −1)2(ab −1)(ab +1) =2.(ab )2+2(ab )2−1
$\Rightarrow A.\left(\frac{a}{b}\right)^2-A=2.\left(\frac{a}{b}\right)^2+2\Rightarrow A.\left(\frac{a}{b}\right)^2-2.\left(\frac{a}{b}\right)^2=A+2$⇒A.(ab )2−A=2.(ab )2+2⇒A.(ab )2−2.(ab )2=A+2
$\Rightarrow\left(A-2\right).\left(\frac{a}{b}\right)^2=A+2\Rightarrow\left(\frac{a}{b}\right)^2=\frac{A+2}{A-2}$⇒(A−2).(ab )2=A+2⇒(ab )2=A+2A−2
ta có: $B=\frac{\left(\frac{a}{b}\right)^4+1}{\left(\frac{a}{b}\right)^4-1}+\frac{\left(\frac{a}{b}\right)^4-1}{\left(\frac{a}{b}\right)^4+1}$B=(ab )4+1(ab )4−1 +(ab )4−1(ab )4+1
$\Rightarrow B=\frac{\left(\frac{A+2}{A-2}\right)^2+1}{\left(\frac{A+2}{A-2}\right)^2-1}+\frac{\left(\frac{A+2}{A-2}\right)^2-1}{\left(\frac{A+2}{A-2}\right)^2+1}=\frac{\left(A+2\right)^2+\left(A-2\right)^2}{\left(A+2\right)^2-\left(A-2\right)^2}+\frac{\left(A+2\right)^2-\left(A-2\right)^2}{\left(A+2\right)^2+\left(A-2\right)^2}$⇒B=(A+2A−2 )2+1(A+2A−2 )2−1 +(A+2A−2 )2−1(A+2A−2 )2+1 =(A+2)2+(A−2)2(A+2)2−(A−2)2 +(A+2)2−(A−2)2(A+2)2+(A−2)2
$\Rightarrow B=\frac{2.A^2+8}{8.A}+\frac{8.A}{2.A^2+8}=\frac{\left(2A^2+8\right)^2+64.A^2}{8.A\left(2A^2+8\right)}=\frac{\left(A^2+4\right)^2+16.A^2}{4.A\left(A^2+4\right)}$⇒B=2.A2+88.A +8.A2.A2+8 =(2A2+8)2+64.A28.A(2A2+8) =(A2+4)2+16.A24.A(A2+4)
Cho 2 số thực a,b thỏa mãn a^2 khác b^2.
Đặt A=\(\frac{a+b}{a-b}+\frac{a-b}{a+b}\) . Tính B=\(\frac{a^4+b^4}{a^4-b^4}+\frac{a^4-b^4}{a^4+b^4}\) theo A.
Tìm các số nguyên dương a,b thỏa mãn\(\frac{4}{a}+\sqrt[3]{4-b}=\sqrt[3]{4+4\sqrt{b}+b}+\sqrt[3]{4-4\sqrt{b}+b}\)
Ta đặt \(x=\sqrt[3]{2-\sqrt{b}};y=\sqrt[3]{2+\sqrt{b}}\Rightarrow x^3+y^3=4.\)
\(x^2=\sqrt[3]{4-4\sqrt{b}+b}=\sqrt[3]{\left(2-\sqrt{b}\right)^2},y^2=\sqrt[3]{4+4\sqrt{b}+b}=\sqrt[3]{\left(2+\sqrt{b}\right)^2}\).
\(\sqrt[3]{4-b}=\sqrt[3]{\left(2-\sqrt{b}\right)\left(2+\sqrt{b}\right)}=xy\).
Ta có: \(\frac{4}{a}+xy=x^2+y^2\Leftrightarrow\frac{4}{a}=x^2+y^2-xy.\)
\(\Leftrightarrow4=a\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\).
Suy ra: x + y = a. Vậy x + y là ước của 4 và x + y nguyên dương.
Từ đó ta suy ra: x + y = 1; 2; 4. Kết hợp với điều kiện \(x^3+y^3=4,x\le y.\), Ta sẽ có 3 hệ, các bạn tìm x, y rồi tìm a, b.
cho 2 số thực a,b thỏa mãn a2 # b2
Đặt A=(a+b) /(a-b) + (a-b)/(a+b). tính B =( a4 + b4)/(a4 - b4) + (a4 - b4) /(a4 + b4) theo A
a,b,c >0 chứng minh a^4+b^4+c^4 >= ((a+3b)/4)^4 + ((b+3c)/4)^4 + ((c+3a)/4)^4
cho a,b,c,d tm a^2+b^2+(a+b)^2=c^2+d^2+(c+d)^2
cmr a^4+b^4+(a+b)^4=c^4+d^4+(c+d)^4