Những câu hỏi liên quan
SP
Xem chi tiết
DT
Xem chi tiết
DN
7 tháng 7 2017 lúc 20:52

Vì p là số nguyên tố lớn hơn 3 nên p lẻ

=> p+2015 và p+2017 là 2 số chẵn liên tiếp

=> (p+2015)(p+2017) chia hết cho 8(1)

mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2

Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)

Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)

Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24

=> ĐPCM

Bình luận (0)
NA
19 tháng 3 2018 lúc 12:44

tìm x sao cho 2 + 2x+1 + 2x+2 + 2x+3  + ... +2x+2015 = 22017 - 2

giải giúp mình với

Bình luận (0)
NK
Xem chi tiết
VI

Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2 

Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 ) 

Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố 

=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6

Bình luận (0)
 Khách vãng lai đã xóa
LT
15 tháng 8 2021 lúc 15:27

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+1⋮3 (2).

Từ (1) và (2) cho ta p+1⋮6

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 8 2021 lúc 15:31

Vì p là số nguyên tố lớn hơn 3 nên p phải là số lẻ

Mà p + 1 = số chẵn => Số chẵn \(⋮\)6  

Ta có VD:

p = 5 

Thỏa mãn đề :   p  >  3   hay   5  >  3 ( 5 là số nguyên tố )

Mà :    5   +   2  = 7 ( 7 là số nguyên tố )

   5    +    1   =  6   mà    6  \(⋮\)

Vậy  p  +  1  \(⋮\)6

- Hok T - 

Bình luận (0)
 Khách vãng lai đã xóa
NY
Xem chi tiết
DD
3 tháng 8 2016 lúc 10:13

mik chỉ ms gặp bài này thôi

Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24?

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

Bình luận (0)
CH
15 tháng 1 2018 lúc 8:43

Câu hỏi của Nguyen Huy Hoang - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

Bình luận (0)
LK
21 tháng 11 2019 lúc 21:22

a là số nguyên tố lớn hơn 3 nên a không chia hết cho 2 (vì nếu a chia hết cho 2 thì là hợp số)

=> a-1 chia hết cho 2

=>(a-1)(a+4) chia hết cho 2

a nguyên tố lớn hơn 3 nên a không chia hết cho 3=> a chia 3 dư 1 hoặc a chia 3 dư 2

nếu a chia 3 dư 1 thì a-1 chia hết cho 3=> (a-1)(a+4) chia hết cho 3

nếu a chia 3 dư 2 thì a+4 chia hết cho 3=> (a-1)(a+4) chia hết cho 3

do đó (a-1)(a+4) chia hết cho 3

lại có 2 và 3 nguyên tố cùng nhau

nên ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
SL
Xem chi tiết
GC
6 tháng 9 2016 lúc 20:16

2p - 1 = ( p - 1 ) . ( p + 1 ) 

p là số nguyên tố lớn hơn 3 => p không chia hết cho 2 ; 3 

Ta có : p không chia hết cho 2 

=> p - 1 và p + 1 là hai số chẵn liên tiếp => ( p - 1 ) . ( p + 1 ) chia hết cho 8 ( 1 ) 

Lại mặt khác ta có : p không chia hết cho 3 

Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 

Tương tự ta có : Nếu p = 3k + 2 thì p + 1 = 3k + 3 chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 (2)

Từ ( 1 ) và ( 2 ) => 2p - 1 chia hết cho 8 cho 3 mà ( 8; 3 ) = 1 => 2p - 1 chia hết cho .............

Bình luận (0)
GC
6 tháng 9 2016 lúc 20:17

l-i-k-e nah

Bình luận (0)
SL
Xem chi tiết
SL
Xem chi tiết
SL
Xem chi tiết
NL
6 tháng 9 2016 lúc 20:14

Mình nghĩ là đề bài thế này : Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
                      BÀI GIẢI
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 và 3 
Ta có : P không chia hết cho 2 
=> P - 1 và P + 1 là 2 số chẵn liên tiếp => ( P - 1 )( P + 1 ) chia hết cho 8 ( 1 )'
Mặt khác : P không chia hết cho 3 
Nếu P = 3k + 1 thì P - 1 chia hết cho 3k => ( P - 1 )( P + 1 ) chia hết cho 3 ( 2 )
Từ ( 1 ) và ( 2 ) => ( P - 1 )( P + 1 ) chia hết cho 8 và chia hết cho 3 mà ( 8 ; 3 ) = 1 => ( P - 1 )( P + 1 ) chia hết cho 24.

Bình luận (0)
BL
Xem chi tiết
ST
22 tháng 11 2017 lúc 19:26

Ta có: A = n2 - 1 = (n - 1)(n + 1)

Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

- Nếu n = 3k + 1 thì:

A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3

- Nếu n = 3k + 2 thì:

A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3

Từ hai trường hợp trên ta có A \(⋮\) 3 (2)

Mà (8,3) = 1 (3)

Từ (1),(2),(3) => \(A⋮24\)

Bình luận (0)