Cho n nguyên dương. CMR : Nếu \(2^n+1\)là số nguyên tố thì n là lũy thừa của 2
Cho a,n đều là số nguyên dương lớn hơn 1, CMR
Nếu an-1 là số nguyên tố thì a=2 và n là số nguyên tố
Nếu an+1 là số nguyên tố thì a chia hết cho2 và n là lũy thừa của 2
chứng minh nếu 2^n+1 là số nguyên tố (n thuộc N) thì n là lũy thừa của 2
1. Cho n là số tự nhiên \(\left(n\ge1\right)\). Giả sử \(2^n+1\)là 1 số nguyên tố. Cmr : n là một lũy thừa của 2
2. Cmr : tồn tại vô số số nguyên dương a sao cho n^4+a là k số nguyên tố \(\forall n\inℕ^∗\)
3. Cmr : \(\forall\)số nguyên tố p > 7 ta có : \(3^p-2^p-1⋮42\)
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
CMr nếu n là số nguyên dương sao cho n!+1 chia hết cho n+1 thì n+1 là số nguyên tố
Bài 2:Viết chương trình cho phép nhập số nguyên dương N rồi thực hiện
a. cho biết N có phải là lũy thừa ba của một số hay không
b. Viết N dưới dạng một lũy thừa với số mũ là số tự nhiên của 5, viết không nếu N không phải là lũy thừa của 5
c. Tìm số dư khi N mũ n chia cho 7
Mik cần gấp ạ, giúp mik với và bằng Pascal nhé!!!!
Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn
#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int main()
{
cin>>n;
a=1;
while (pow(a,3)<=n)
{
a++;
}
if (pow(a,3)==n) cout<<"YES";
else cout<<"NO";
cout<<endl;
b=1;
while (pow(5,b)<=n) do b++;
if (pow(5,b)==n) cout<<"YES";
else cout<<"NO";
cout<<endl<<pow(n,n)%7;
return 0;
}
a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)
b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)
A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)
Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)
=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)
B)
Do 1 lẻ , \(2q^2\) chẵn nên p lẻ
p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)
p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4
⇒\(q^2\):2 =>q:2 =>q=2
⇒\(q^2\)=2.2\(^2\)+1=9=>q=3
Chắc đúng vì hôm trước cô mik giải thik va, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)
=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)⋮\(\dfrac{n\left(n+1\right)}{2}\)
=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)
đpcm
CMR nếu p là một số nguyên tố thì n^p - n chia hết cho p với mọi số nguyên dương n
Cho n là số tự nhiên . Chứng minh với 2n + 1 là số nguyên tố thì n là lũy thừa của 2
Trả lời:
2ⁿ + 1 là số nguyên tố. Ta xét n > 1 (vì với n = 1 có 2ⁿ + 1 = 3 là số nguyên tố) => n không có ước nguyên tố lẻ. Thật thế giả sử n = k*p với p là số nguyên tố lẻ, k ≥ 1
=> 2ⁿ + 1 = (2^k)^p + 1 = (2^k + 1)*B với B > 1, 2^k + 1 ≥ 2¹ + 1 = 3 > 1, tức 2ⁿ + 1 là hợp số, không thể
Vậy n chỉ có ước nguyên tố 2, tức n là lũy thừa của 2, tức có dạng 2^k với k ≥ 0 (k = 0 cho n = 1)
(ta đã dùng khai triển của aⁿ + bⁿ với n lẻ)