Những câu hỏi liên quan
MN
Xem chi tiết
NH
Xem chi tiết
TG
Xem chi tiết
TM
Xem chi tiết
HT
Xem chi tiết
TH
Xem chi tiết
NT
24 tháng 2 2022 lúc 13:32

Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn

#include <bits/stdc++.h>

using namespace std;

long long n,a,b;

int main()

{

cin>>n;

a=1;

while (pow(a,3)<=n) 

{

a++;

}

if (pow(a,3)==n) cout<<"YES";

else cout<<"NO";

cout<<endl;

b=1;

while (pow(5,b)<=n) do b++;

if (pow(5,b)==n) cout<<"YES";

else cout<<"NO";

cout<<endl<<pow(n,n)%7;

return 0;

}

Bình luận (1)
H24
Xem chi tiết
NO
26 tháng 11 2021 lúc 22:09

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
Bình luận (1)
H24
26 tháng 11 2021 lúc 22:14

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm

Bình luận (0)
NT
Xem chi tiết
FZ
Xem chi tiết
TN
8 tháng 6 2015 lúc 18:13

Trả lời:

2ⁿ + 1 là số nguyên tố. Ta xét n > 1 (vì với n = 1 có 2ⁿ + 1 = 3 là số nguyên tố) => n không có ước nguyên tố lẻ. Thật thế giả sử n = k*p với p là số nguyên tố lẻ, k ≥ 1 
=> 2ⁿ + 1 = (2^k)^p + 1 = (2^k + 1)*B với B > 1, 2^k + 1 ≥ 2¹ + 1 = 3 > 1, tức 2ⁿ + 1 là hợp số, không thể 
Vậy n chỉ có ước nguyên tố 2, tức n là lũy thừa của 2, tức có dạng 2^k với k ≥ 0 (k = 0 cho n = 1) 
(ta đã dùng khai triển của aⁿ + bⁿ với n lẻ)

Bình luận (0)