tìm 2 số tự nhiên m,n thỏa mãn 10 < hoặc = m < 14
10: tìm 2 số tự nhiên m,n thỏa mãn 10 < m < n < 14
(m,n)= (11,12)(11,13)(12,13)
m, n là 2 số tự nhiên mà 10 < m < n < 14
\(\Rightarrow\left(m,n\right)\in\left\{\left(11;12\right),\left(12;13\right),\left(11;13\right)\right\}\)
Vậy \(\left(m,n\right)\in\left\{\left(11;12\right),\left(12;13\right),\left(11;13\right)\right\}\)
Tìm 2 số tự nhiên m, n thỏa mãn: 10< m < n <14
Câu 15. Tìm số tự nhiên m thỏa mãn 202018 < 20m < 202020?
A. m = 2020. B. m = 2019. C. m = 2018. D. m = 20.
Câu 16. Tìm số tự nhiên n thỏa mãn 3n = 81
A. n = 2 B. n = 3 C. n = 4 D. n = 8
Câu 17: Viết kết quả phép tính sau dưới dạng một luỹ thừa: 87: 8 là:
A. 86 B. 85 C. 84 D. 83
Câu 18: Cho biều thức M = 75 + 120 + x. Giá trị nào của x dưới đây thì M ⋮ 3
A.x = 7 B.x= 5 C.x =4 D.x =12
Câu 19: Tổng nào sau đây chia hết cho 7 ?
A.49 + 70 B.14 + 51 C.7 + 134 D.10+16
Câu 20: Số tự nhiên m chia cho 45 dư 20 có dạng là:
A. 45 + 20k B. 45k – 20 C. 45 – 20k D. 45k + 20
Câu 21: Điền chữ số vào dấu * để chia hết cho 3:
A. {0; 3; 6}. B.{1; 3; 6; 9}. C.{3; 6; 9}. D.{0; 6; 9}.
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
Tìm số tự nhiên m thỏa mãn đồng thời cả 2 phương trình sau:
a) 4(n+1)+3n-6<19 và b) (n-3)^2-(n+4)(n-4)< hoặc = 43
a) <=> 4n+4+3n-6 <19 <=> 7n<21 <=> n<3 (1)
b) <=> n^2 - 6n + 9 - n^2 +16 \(\le\)43
\(\Leftrightarrow\)-6n \(\le\)18 <=> n > 3 (2)
Từ 1 và 2 => n=\(\Phi\)
tìm m,n là số tự nhiên thỏa mãn: 3^m-2^n=5
m la 2
n cung la 2
vi 3*2=9
2*2 = 4
9-4 = 5
tìm tất cả các số tự nhiên n thỏa mãn 5n+14 chia hết cho n+2
vì : 5n+14 ⋮ n+ 2
⇒ ( 5n +10) +4 ⋮ ( n+2)
⇒ 5 (n + 2) + 4 ⋮ (n + 2)
mà : 5 (n + 2) ⋮ (n + 2)
nên: 4 ⋮ n + 2
⇒ n + 2 ϵ Ư (4)= {1;2;4}
Vì: n ϵ N ⇒ n + 2 ≥ 2
do đó : xảy ra hai trường hợp :
n+2 | 2 | 4 |
n | 0 | 2 |
Vậy : n ϵ { 0;2}
Tìm tất cả các số tự nhiên n thỏa mãn 5n + 14 chia hết cho n+2
\(5n+14⋮n+2\)
\(5\left(n+2\right)+4⋮n+2\)
\(4⋮n+2\)
\(n+2\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n\in\left\{0;2\right\}\)
Cho m,n là hai số tự nhiên thỏa mãn ƯCLN(m,n)=1. Tìm ƯCLN(m2,n)