tìm giá trị nhỏ nhất của biểu thức : B = | x+2/3| - 7
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
a, Tìm giá trị nhỏ nhất của biểu thức
A = | x+5|+|x+2|+|x+7|+|x-8|
b,Tìm giá trị nhỏ nhất của biểu thức
B= |x+3|+|x-2|+|x-5|
c,Tìm giá trị lớn nhất của biểu thức
C= |x+5|-|x-2|
giải cụ thể nha
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
Nguyễn Minh Quang sai dấu câu A rồi
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
bài 3
tìm giá trị lớn nhất của biểu thức A = 11x - 10x - x^2
tìm giá trị nhỏ nhất của biểu thức B = X^2 + 3X + 7
B=\(x^2+3x+7\)
=>B= \(x^2+2\times\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)
=>B=\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) (Với mọi x)
=>\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\) (Với mọi x )
Dấu "='' xảy ra <=> \(x+\frac{3}{2}=0=>x=-\frac{3}{2}\)
Vậy min B bằng 19/4 <=>x=-3/2
Phần b thì mk làm đc n phần a hình như sai đề pn ạ !!!
a) tìm giá trị nhỏ nhất của biểu thức:
A=x^2-2x+9
B=x^2+6x-3
c=(x-1)(x-3)+9
b) tìm giá trị lớn nhất của biểu thức: D=-x^2-4x+7
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
hello, cần lm j z?
klkkkkkkkkkujoiyuj
a/ Tìm giá trị nhỏ nhất của biểu thức : A= | x-7 | -1
b/ Tìm giá trị lớn nhất của biểu thức : -| 2x+4 | +3
a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất
=> |x-7| = 0
Vậy GTNN của A là : 0-1= -1
1) tìm giá trị nhỏ nhất của biểu thức:
A=/x-3/+8.
2) tìm giá trị nhỏ nhất của biểu thức:
B= 11- / 4+x /
3) tìm giá trị nhỏ nhất của biểu thức:
a) M=/x-3/+18-x/
b) M= /x-4/+/x-10/
2:
|x+4|>=0
=>-|x+4|<=0
=>B<=11
Dấu = xảy ra khi x=-4
a, Tìm giá trị nhỏ nhất của biểu thức :
A= (-14)+3./x-5/
b, Tìm giá trị lớn nhất của biểu thức :
B=5-/2x+9/
C=(-5)-2./x-7/
tìm giá trị nhỏ nhất của biểu thức A=(x-3)2+2
tìm giá trị nhỏ nhất của biểu thức B=11-x2
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\)
Vậy GTNN của A là 2 khi x = 3
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).