Những câu hỏi liên quan
VR
Xem chi tiết
XO
12 tháng 10 2019 lúc 22:00

Ta có : \(3A=3+3^2+3^3+...+3^{102}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2A=3^{102}-1\)

\(A=\frac{3^{102}-1}{2}\)

Ta có : 3102 - 1 = 3100 + 2 - 1

                   = 325.4 + 2 - 1

                   = 325.4 . 32 - 1

                   = ....1 . 9 - 1

                   = ...9 - 1

                   = ...8

=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)

Vậy chữ số tận cùng của A là 4

Bình luận (0)
PD
12 tháng 10 2019 lúc 22:01

Nhân A thêm 3

Lấy 3A - A được 3^102 -1

A = (3^102-1)/2

3^4k có tận cùng là 1

nên A có tận cùng là 0

Bình luận (0)
PD
12 tháng 10 2019 lúc 22:01

Bee swam à kb đi

Tên tui là Acerchicken

Bình luận (0)
PN
Xem chi tiết
AH
12 tháng 9 2021 lúc 3:54

Lời giải:
$A=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{56}+3^{57}+3^{58}+3^{59})$

$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^{56}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(1+3^4+...+3^{56})$

$=40.(1+3^4+...+3^{56})\vdots 10$

Do đó chữ số tận cùng của $A$ là $0$

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 2 2017 lúc 14:45

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 6 2017 lúc 11:29

A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30

3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31

2A = 3A – A =  ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 )  –  ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )

2A =  3 31 - 1

A =  3 31 - 1 2

Ta có  3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243

với n ≥ 0 thì  3 4 n + 3 có chữ số tận cùng là 7.Vì  31 = 4.7 + 3 nên  3 31 có chữ số tận cùng là 7. Do đó  3 31 - 1 2  có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.

Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương

Bình luận (0)
Xem chi tiết

Đây là toán lớp 3 á!!!!
Mà bn có vt sai đề bài ko? Mk tính ko ra

Bình luận (0)
 Khách vãng lai đã xóa

để mik xem lại

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
VN
Xem chi tiết
NC
Xem chi tiết
AH
3 tháng 8 2021 lúc 16:23

Lời giải:

$A=1+3+3^2+3^3+....+3^{30}$

$3A=3+3^2+3^3+....+3^{31}$

$3A-A=(3+3^2+3^3+...+3^{31})-(1+3+...+3^{30})$

$2A=3^{31}-1$

$A=\frac{3^{31}-1}{2}=\frac{3.3^{30}-1}{2}$

$=\frac{3.9^{15}-1}{2}$

Ta thấy: Đối với $9^n$ thì $n$ chẵn số này sẽ có tận cùng là $1$, $n$ lẻ sẽ có tận cùng là $9$

Vậy $9^{15}$ tận cùng là $9$

$\Rightarrow 3.9^{15}$ tận cùng là $7$

$\Rightarrow 3.9^{15}-1$ tận cùng là $6$

$\Rightarrow A=\frac{3.9^{15}-1}{2}$ tận cùng là $3$ hoặc $8$

Do đó $A$ không thể là scp.

 

Bình luận (0)
TH
Xem chi tiết
LD
18 tháng 8 2017 lúc 18:56

Ta có : \(A=3+3^2+3^3+...........+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+......+3^{101}\)

\(\Rightarrow3A-A=3^{101}-3\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}\)

Vậy x = 101

Bình luận (0)