1/3 + 1/6 + 1/10 + ..... + 2/x.(x+1)=1009/1010
tính 1/1009 X 2016 + 1 / 1010 x 2015 + ....... + 1 / 2015 x 1010 + 1/1016 x 1009
1/1011+1/1010+1/1009+...+1/2
Tất cả trên
1010/1+1009/2+1008/3+...+1/1010
Nhanh Lên, em mình hỏi mà bí quá
Ai nhanh mình tích cho nha
1/1*2+1/3*2+1/5*6+.....+1/2013*2014
-------------------------------------------------------
1/1008*2014+1/1009*2013+1/1010*2012+....1/2014*2018
1/3+1/6+1/10+...+2/x(x+1) = 1010/2022
Cho V = 1/1*2+1/3*4+1/5+6+...+1/2015*2016 và Y = 1/1008+1/1009+1/1010+...+1/2016.Tính V:Y
Sửa đề: Cho \(V=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)và \(Y=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\). Tính \(\frac{V}{Y}\)
\(V=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
=> \(\frac{V}{Y}=\frac{\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}}=1\)
V = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)
V = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
V = \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
V = \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
V = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
V = \(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
Vậy V : Y = \(\frac{\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}}{\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2016}}\)
( Mình nghĩ Y = 1/1009 + 1/1010 + ... + 1/2016 / Nếu Y như mình nói thì V : Y = 1 )
A=1/1*2 + 1/3*4 + 1/5*6 + ... +1/2013*2014
B=1/1008*2014 + 1/1009*2013 + 1/1010*2012+ ... + 1/2014*1008
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)
1/3+1/6+1/10+...+1/x(x+1)=1010/1012
đề sai 1/x(x + 1) phải là 2/x(x + 1)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1010}{1012}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1010}{1012}\)
\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1010}{1012}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1010}{1012}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1010}{1012}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{505}{1012}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1012}\)
\(\Rightarrow x+1=1012\)
\(\Rightarrow x=1011\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+........+\frac{2}{x\cdot\left[x+1\right]}=\frac{1008}{1009}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1008}{1009}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1008}{1009}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1008}{1009}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1008}{1009}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1008}{1009}\)
\(\Leftrightarrow1-\frac{2}{x+1}=\frac{1008}{1009}\)
\(\Leftrightarrow\frac{-2}{x-1}=\frac{1008}{1009}-1\)
\(\Leftrightarrow\frac{-2}{x+1}=\frac{-1}{1009}\)
\(\Leftrightarrow-1.\left(x+1\right)=-2.1009\)
\(\Leftrightarrow-x-1=-2018\)
\(\Leftrightarrow-x=-2018+1=-2017\)
\(\Leftrightarrow x=2017\)
Vậy x=2017
A=(1/1009+1/1010+...+1/2016+1/2017)(1-1/2+1/3-1/4+...+1/2015-1/2016)