Cho \(H\left(x\right)=-x^2+1\). Chứng minh H(x) không có nghiệm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
1. Cho \(A\left(x\right)=x^2+x+2\)
Chứng minh A(x) không có nghiệm dương
2. Cho \(B\left(x\right)=x^2-3x+1\)
Chứng minh B(x) không có nghiệm âm
3. Cho \(C\left(x\right)=x^2+2x+5\)
Chứng minh C(x) không co nghiệm
Cho \(P_{\left(x\right)}=-x^3+x^2-\frac{1}{2}x+2\)2
\(Q_{\left(x\right)}=x^3-\frac{9}{4}x^2+3x-5\)
Tính \(H_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\)
Chứng minh đa thức H(x) không có nghiệm
H(x)=\(-\frac{5}{4}x^2+\frac{5}{3}x-3\)
Áp dụng CT giải PT bậc 2 ta có: \(\Delta=b^2-4ac=\frac{25}{9}-15=-\frac{110}{9}\)
Vì đenta <0 suy ra pt vô nghiệm (DPCM)
cho pt \(x^2-2\left(m+1\right)x+m-4=0\)
a, tìm m để pt có 2 nghiệm trái dấu
b, chứng minh rằng ppt luôn có 2 nghiệm pphan biệt với mọi m
c, chứng minh biểu thức \(M=x_1\left(1-x_2\right)+x_2\left(1-x_2\right)\) không phụ thuộc vào m
Chứng minh rằng đa thức sau không có nghiệm trên tập hợp R:
a) \(G\left(y\right)=-y^2-4y-4\)
b) \(H\left(x\right)=\left|x+3\right|+\left|5-x\right|+7\)
a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)
có nghiệm là -2
b,ta có:
Câu a làm giống bạn kia đc rồi
b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((
Lục đục nãy giờ mới thấy :/
Cho \(h\left(x\right)=-3x^2-1\). Chứng minh đa thức h(x) không có nghiệm
Cho \(ax^2+bx+c=0\) có nghiệm, \(f\left(x\right)=\alpha x^2+\beta x+\gamma\) \(\left(a.\alpha\ne0\right)\) có hai nghiệm và khoảng hai nghiệm đó chứa \(\left(0;2\right)\). Chứng minh \(a.f\left(0\right)x^2+b.f\left(1\right)x+c.f\left(2\right)=0\) có nghiệm
chứng tỏ rằng đa thức \(H\left(x\right)=x^4+2x^3+2x^2+1\) không có nghiệm
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt