Những câu hỏi liên quan
NP
Xem chi tiết
SN
11 tháng 5 2015 lúc 19:42

\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}=\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+\left(1+\frac{1}{4.5}\right)+...+\left(1+\frac{1}{99.100}\right)\)\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=98+\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=98+\frac{49}{100}=98\frac{49}{100}\)

Bình luận (0)
H24
Xem chi tiết
NC
10 tháng 6 2020 lúc 11:36

c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
XO
10 tháng 6 2020 lúc 11:05

a) M . N = \(\left(\frac{1}{2.}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)=\frac{1.2.3.4....100}{2.3.4.5...101}=\frac{1}{101}\)

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
LC
15 tháng 5 2019 lúc 17:47

Ta có: 

\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)

\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)

\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)

\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)

\(\Rightarrow A< 407.2=814\)

Bình luận (0)
NN
Xem chi tiết
BB
Xem chi tiết
NL
29 tháng 3 2019 lúc 18:16

Sử dụng khá nhiều kiến thức hằng đẳng thức lớp 8, lớp 7 bó tay

\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+...-\frac{197^3}{9702}+\frac{199^3}{9900}\)

\(\frac{A}{2}=\frac{3^3}{1.2}-\frac{5^3}{2.3}+\frac{7^3}{3.4}-\frac{9^3}{4.5}+...+\frac{199^3}{99.100}\)

\(\frac{A}{2}=3^3\left(1-\frac{1}{2}\right)-5^3\left(\frac{1}{2}-\frac{1}{3}\right)+7^3\left(\frac{1}{3}-\frac{1}{4}\right)-...+199^3\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{2}=3^3-\frac{3^3+5^3}{2}+\frac{5^3+7^3}{3}-\frac{7^3+9^3}{4}+...+\frac{197^3+199^3}{99}-\frac{199^3}{100}\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}-\left(16.2^2+12\right)+\left(16.3^2+12\right)-\left(16.4^2+12\right)+...+\left(16.99^2+12\right)\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(3^2-2^2+5^2-4^2+7^2-6^2+...+99^2-98^2\right)\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(2+3+4+5+...+98+99\right)\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(99.50-1\right)\)

\(\Rightarrow A=16.99.100-\frac{199^3}{50}+22\) (đến đây bấm máy ra kết quả so sánh cũng được)

\(\Rightarrow A=\frac{2^3.100^2\left(100-1\right)-199^3}{50}+22\)

\(A=\frac{200^3-199^3-2.200^2}{50}+22\)

\(A=\frac{200^2+200.199+199^2-2.200^2}{50}+22\)

\(A=\frac{199^2-200^2+200.199}{50}+22\)

\(A=\frac{-199-200+200.199}{50}+22=\frac{199^2}{50}+18\)

\(A< \frac{199.200}{50}+18=814\)

Vậy \(A< 814\)

Bình luận (0)
AV
Xem chi tiết
NT
Xem chi tiết
MS
Xem chi tiết
NA
Xem chi tiết