Cho (3.a + 2.b) ⋮ 17 (a;b ϵ N)
CMR (10.a + b) ⋮ 17
1. Cho 3.a +2.b chia hết cho 17
chứng minh rằng : 10.a +b chia hết cho 17
2.Cho a = 5.b chia hết cho 17
chứng minh rằng: 10.a +b chia hết cho 17
a) Cho A= 3+3^2+3^3+....+ 3^2009+3^2010
Chứng tỏ A chia hết cho 13
b) Cho B= 4+4^2+4^3+....+4^16+4^17
Tìm số dư khi chia B cho 17
cho a+b=3 và a^2+b^2=17. Tính a^3+b^3
a) Cho A= 3+3^2+3^3+....+ 3^2009+3^2010
Chứng tỏ A chia hết cho 13
b) Cho B= 4+4^2+4^3+....+4^16+4^17
Tìm số dư khi chia B cho 17
Các bạn giuos minh nhanh với
\(A=3+3^2+3^3+...+3^{2009}+3^{2010}=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(A=3.13+3^4.13+...+3^{2008}.13\)
\(A=13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
\(B=\left(4+4^3\right)+\left(4^2+4^4\right)+\left(4^5+4^7\right)+\left(4^6+4^8\right)+...+\left(4^{15}+4^{17}\right)\)
\(B=4.17+4^2.17+4^5.17+...+4^{15}.17\)chia hết cho 17=>số dư = 0
Chứng minh rằng : 3 nhân a + 2 nhân b chia hết cho 17 khi và chỉ khi 10 nhân a + b chia hết cho 17 ( a,b thuộc Z )
chứng minh rằng với mọi a,b,c thuộc Z nếu a-11.b +3.c chia hết cho 17 thì 2.a-5.b+6.c chia hết cho 17
Cho a^3-3a^2+5a-17=0 ; b^3-3b^2+5b+11=0 Tính A= a+b
+ Lời giải 1. Từ3 2
b 3b 5b 11 0− + + = ta được( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 2
3 2 2 2
2 2 2 2
b 3b 5b 11 0 b 6b 12b 8 3 b 4b 4 5 b 2 17 0
b 2 3 b 2 5 b 2 17 0 2 b 3 b 2 5 2 b 17 0
2 b 3 b 2 5 2 b 17 0 2 b 3 b 2 5 2 b 17 0
− + + = − + − + − + + − + =
− + − + − + = − − + − − − + =
− − − − + − − = − − − + − − =
Từ đó kết hợp với3 2
a 3a 5a 17 0− + − = ta suy ra được( ) ( ) ( )
2 23 2
a 3a 5a 17 2 b 3 b 2 5 2 b 17 0− + − = − − − + − − =
Do vậy ta cóa 2 b= − haya b 2+ =
+ Lời giải 2. Xéta 2 b= − thay vào vế trái của3 2
a 3a 5a 17 0− + − = , ta có( ) ( ) ( )
( )
3 23 2
2 3 2
3 2 3 2
a 3a 5a 17 2 b 3 2 b 5 2 b 17
8 12b 6b b 12 12b 3b 10 5b 17
b 3b 5b 11 b 3b 5b 11 0
− + − = − − − + − −
= − + − − + − + − −
= − + − − = − − + + =
Điều này dẫn đếna 2 b= − thỏa mãn3 2
a 3a 5a 17 0− + − = . Từ đó suy raa b 2+ = .•
Lời giải 3. Ta có( ) ( )
33 2 3 2
a 3a 5a 17 a 3a 3a 1 2a 16 a 1 2 a 1 14− + − = − + − + − = − + − − .
Đặtx a 1= − , khi đó kết hợp với giả thiết ta được3
x 2x 14 0+ − =
Ta cũng có( ) ( )
33 2 3 2
b 3b 5b 11 b 3b 3b 1 2b 12 b 1 2 b 1 14− + + = − + − + + = − + − +
Đặty b 1= − , khi đó kết hợp với giả thiết ta được3
y 2y 14 0+ + = . Kết hợp hai kết
quả ta được( ) ( )( )3 3 3 3 2 2
x 2x 14 y 2y 14 0 x y 2 x y 0 x y x xy y 2 0+ − + + + = + + + = + − + + =
Dễ thấy22 2 2
2 2 2 y 3y y 3y
x xy y 2 x xy 2 x 2 0
4 4 2 4
− + + = − + + + = + + +
.
Do đó ta đượcx y 0+ = haya 1 b 1 0− + − = nêna b 2+ = .•
Lời giải 4. Cộng theo vế các hệ thức đã cho ta được
Cho A = 4 + 42 + 43 + 44 + ... + 216 + 217
Tìm số dư khi A chia cho 17