Những câu hỏi liên quan
H24
Xem chi tiết
H24
24 tháng 6 2021 lúc 16:01

`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`

`đk:x ne 0,x ne -2`

`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`

`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`

`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`

`=-4/(x+2)^2*(x+2)/4`

`=-1/(x+2)`

`b)P<0`

`<=>-1/(x+2)<0`

Vì `-1<0`

`<=>x+2>0`

`<=>x> -2`

`c)P=1/x+1(x ne 0)`

`<=>-1/(x+2)=1/x+1`

`<=>1/x+1+1/(x+2)=0``

`<=>x+2+x(x+2)+x=0`

`<=>x^2+4x+2=0`

`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\) 

`d)|2x-1|=3`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\) 

`x=-1=>P=-1/(-1+2)=-1`

`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?

Bình luận (2)
H24
24 tháng 6 2021 lúc 16:04

a) đk: \(x\ne-2;2\)

 \(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)

\(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)

\(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)

b) Để P < 0

<=> \(\dfrac{-1}{x+2}< 0\)

<=> x +2 > 0

<=> x > -2 ( x khác 2)

c) Để P= \(\dfrac{1}{x}+1\)

<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)

<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)

<=> x2 + 4x + 2 = 0

<=> (x+2)2 = 2

<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)

d) Để \(\left|2x-1\right|=3\)

<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)

Thay x = -1, ta có:

P = \(\dfrac{-1}{-1+2}=-1\)

 

Bình luận (0)
AT
24 tháng 6 2021 lúc 16:06

a) ĐKXĐ: \(x\ne2;-2\)

\(P=\left(\dfrac{x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{x^2-4}\right):\dfrac{4}{x+2}\)

\(=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4}{x+2}\)

\(=\left(\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{x+2}.\dfrac{1}{x+2}\right):\dfrac{4}{x+2}\)

\(=\left(\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right):\dfrac{4}{x+2}\)

\(=\dfrac{x\left(x+2\right)-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{1}{x+2}\)

b) \(P< 0\Rightarrow-\dfrac{1}{x+2}< 0\Rightarrow x+2>0\Rightarrow x>-2\)

\(\Rightarrow x>-2;x\ne2\)

c) \(P=\dfrac{1}{x}+1\Rightarrow\dfrac{-1}{x+2}=\dfrac{x+1}{x}\Rightarrow-x=\left(x+2\right)\left(x+1\right)\)

\(\Rightarrow-x=x^2+3x+2\Rightarrow x^2+4x+2=0\)

\(\Delta=4^2-2.4=8\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\end{matrix}\right.\)

d) \(\left|2x-1\right|=3\Rightarrow\left[{}\begin{matrix}2x-1=3\\1-2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}P=-\dfrac{1}{2+2}=-\dfrac{1}{4}\\P=-\dfrac{1}{-1+2}=-1\end{matrix}\right.\)

 

 

Bình luận (0)
NN
Xem chi tiết
GG
Xem chi tiết
DT
Xem chi tiết
LQ
Xem chi tiết
TT
24 tháng 6 2017 lúc 14:45

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6

Bình luận (0)
CK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
16 tháng 6 2023 lúc 20:04

a: ĐKXĐ: x<>0; x<>1

\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |2x+1|=3

=>x=1(loại); x=-2(nhận)

Khi x=-2 thì P=4/-3=-4/3

c: P=-1/2

=>x^2/x-1=-1/2

=>2x^2=-x+1

=>2x^2+x-1=0

=>2x^2+2x-x-1=0

=>(x+1)(2x-1)=0

=>x=1/2; x=-1

 

Bình luận (0)
DV
Xem chi tiết
H24
Xem chi tiết
MG
21 tháng 5 2020 lúc 11:52

Rút gọn:

\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)

\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)

\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)

\(M=\frac{x+1}{3x\left(x-1\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa