Những câu hỏi liên quan
MT
Xem chi tiết
MT
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Bình luận (0)
MT
Xem chi tiết
TK
Xem chi tiết
MT
Xem chi tiết
TN
Xem chi tiết
TT
5 tháng 10 2015 lúc 13:11

Xét VT 

ĐKXĐ  \(-1\le x\le3\)

\(XH:\left(-x^2+4x+12\right)-\left(-x^2+2x+3\right)=2x+9\ge0\)

VT^2 = \(-x^2+4x+12-x^2+2x+3+2\sqrt{\left(-x^2+4x+12\right)\left(-x^2+2x+3\right)}\)

<=> \(VT^2=-2x^2+6x+15+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}\)

                    = \(\left(x+2\right)\left(3-x\right)+\left(6-x\right)\left(x+1\right)+2\sqrt{\left(x+2\right)\left(3-x\right)\left(6-x\right)\left(x+1\right)}+3\)

                   = \(\left(\sqrt{\left(x+2\right)\left(3-x\right)}+\sqrt{\left(6-x\right)\left(x+1\right)}\right)^2+3\ge3\)

=> VT \(\ge\sqrt{3}\) dấu '=' xảy khi \(\sqrt{\left(x+2\right)\left(3-x\right)}=\sqrt{\left(6-x\right)\left(x+1\right)}\)

<=> \(-x^2+x+6=-x^2+5x+6\Rightarrow x=0\)

VP = \(\sqrt{3}-x^2\le\sqrt{3}\) 

dấu '=' xảy ra khi tai x = 0 

Vậy VP = VT = căn 3 tại x = 0 

Bình luận (0)
DQ
Xem chi tiết
H24
Xem chi tiết
TD
1 tháng 11 2019 lúc 16:50

nhiều thế giải ko đổi đâu bạn

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 11 2019 lúc 18:47

vậy trả lời câu a thôi

Bình luận (0)
 Khách vãng lai đã xóa
TD
1 tháng 11 2019 lúc 21:06

đkxđ : \(\frac{1}{2}\le x\le7\)

\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)

\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)

\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)

\(\Leftrightarrow x=5\)

còn bài a,c lười đánh lắm

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NT
1 tháng 10 2019 lúc 22:41

Đệ biết là có người làm câu c,d nên xin xí câu e :3

ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)

\(\Leftrightarrow\sqrt{x+1}=7x-19\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)

\(\Rightarrow x=3\left(tm\right)\)

Bình luận (1)
NL
1 tháng 10 2019 lúc 22:35

a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)

\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)

\(\Leftrightarrow x^3-18x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)

Bình luận (0)
NL
1 tháng 10 2019 lúc 22:44

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow2\left(x-1\right)\sqrt{2x-1}-6\left(x-1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{2x-1}-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{2x-1}-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\2x-1=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

d/ ĐKXĐ: \(1\le x< 3\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}-1=2x-6\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}=2x-5\) (\(x\ge\frac{5}{2}\))

\(\Leftrightarrow-x^2+4x-3=\left(2x-5\right)^2\)

\(\Leftrightarrow5x^2-24x+28=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2< \frac{5}{2}\left(l\right)\\x=\frac{14}{5}\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow5+\sqrt{x+1}=7x-14\)

\(\Leftrightarrow\sqrt{x+1}=7x-19\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=\left(7x-19\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=\frac{120}{49}< \frac{19}{7}\left(l\right)\end{matrix}\right.\)

Bình luận (2)
DH
Xem chi tiết