Chứng tỏ rằng đa thức \(A\left(x\right)=3x^4+x^2+2018\) không có nghiệm
Chứng tỏ rằng đa thức A(x)= 3x4 + x2 + 2018 không có nghiệm
ta có \(3x^4\ge0\) với mọi x
\(x^2\ge0\) với mọi x
\(\Rightarrow3x^4+x^2+2018\ge2018\) với mọi x
\(\Rightarrow A(x)\ge2018\) với mọi x
\(\Rightarrow A(x)>0\) với mọi x
\(\Rightarrow A\left(x\right)\ne0\) với mọi x
\(\Rightarrow\) đa thức A(x) không có nghiệm
điều phải chứng minh
Vì \(3x^4\ge0\forall x;x^2\ge0\forall x\)
\(\Rightarrow3x^4+x^2\ge0\)
\(\Rightarrow A\left(x\right)=3x^4+x^2+2018\ge2018>0\)
Vậy...
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Cho 2 đa thức:
\(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5-10+x\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
Chứng tỏ rằng x=1 không phải là nghiệm của đa thức A(x) nhưng là nghiệm của đa thức B(x)
Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)
Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)
Cho các đa thức:
\(P\left(x\right)=x^3+4x^3+3x-6x-4-x^2\)
\(Q\left(x\right)=-x^3-x^2+3x+8\)
b) Tính B(x), biết B(x) = P(x) + Q(x)
c) Chứng tỏ đa thức B(x) không có nghiệm
b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)
\(B\left(x\right)=4x^3-2x^2+4\)
c) \(B\left(x\right)=4x^3-2x^2+4\)
\(B\left(x\right)=2.2xx^2-2x^2+4\)
\(B\left(x\right)=2x^2\left(2x-1\right)+4\)
ta có
\(2x^2\ge0\forall x\in R\)
\(=>2x^2\left(2x-1\right)\ge0\)
mà 4 > 0
\(=>2x^2\left(2x-1\right)+4>0\)
hay B(x) > 0
vậy B(x) ko có nghiệm
chứng minh rằng đa thức A(x) = 3x^4 + x^2 + 2018 không có nghiệm
Chứng tỏ rằng đa thức A(x) = 3x^4 + x^2 + 2018 không có nghiệm.
Cách khác (đơn giản hơn)
Giải:
Ta xét từng hạng tử trong đa thức:
\(3x^4\ge0\)
\(x^2\ge0\)
\(2018>0\)
Cộng theo vế, ta được:
\(3x^4+x^2+2018\ge2018>0\)
Kết luận ...
Giải:
Ta có:
\(x^4\ge0;\forall x\)
\(\Leftrightarrow3x^4\ge0;\forall x\)
\(\Leftrightarrow3x^4+x^2\ge0;\forall x\)
\(\Leftrightarrow3x^4+x^2+2018\ge2018;\forall x\)
\(\Leftrightarrow3x^4+x^2+2018>0;\forall x\)
\(\Leftrightarrow3x^4+x^2+2018\ne0;\forall x\)
\(\Leftrightarrow A\left(x\right)\ne0;\forall x\)
Vậy ...
Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
c) Chứng tỏ rằng x=-1 là nghiệm của\(P\left(x\right)\) nhưng không phải là nghiệm của Q(x)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)