Những câu hỏi liên quan
NT
Xem chi tiết
NT
28 tháng 6 2021 lúc 11:48

a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{NAC}\) chung

Do đó: ΔAMB∼ΔANC(g-g)

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

\(\widehat{NAM}\) chung

Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AMN}=\widehat{ABC}\)(hai góc tương ứng)

b) Gọi giao điểm của AH và BC là K

Xét ΔCHK vuông tại K và ΔCBN vuông tại N có 

\(\widehat{HCK}\) chung

Do đó: ΔCHK∼ΔCBN(g-g)

Suy ra: \(\dfrac{CH}{CB}=\dfrac{CK}{CN}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CH\cdot CN=CB\cdot CK\)

Xét ΔBHK vuông tại K và ΔBCM vuông tại M có 

\(\widehat{HBK}\) chung

Do đó: ΔBHK∼ΔBCM(g-g)

Suy ra: \(\dfrac{BH}{BC}=\dfrac{BK}{BM}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot BM=BC\cdot BK\)

Ta có: \(BH\cdot BM+CH\cdot CN\)

\(=BC\cdot BK+BC\cdot CK\)

\(=BC^2=a^2\)(đpcm)

Bình luận (0)
NA
Xem chi tiết
YN
Xem chi tiết
TT
6 tháng 7 2017 lúc 20:49

bạn tự vẽ hình nhé ^.^

từ B kẻ BH  vuông góc với AC \(\Rightarrow SABC=\frac{1}{2}AC\cdot BH\)(1)    

ap dung ti so luong giac trong tam giac ABH co \(BH=sinA\cdot AB\)  

thay vao(1) ta co \(SABC=\frac{1}{2}AB\cdot AC\cdot sinA\left(DPCM\right)\)

Bình luận (0)
PD
Xem chi tiết
H24
22 tháng 2 2020 lúc 20:28

hình bạn tự vẽ nha

a) Xét tam giác ABB' và tg HBC' có

góc AB'B= HC'B

và góc ABB' chung

=> tg ABB' đồng dạng với tg HBC'(g-g)

=> BH/AB = BC'/BB'

=> BH.BB'=BC'.BA

Tương tự CB'.CA=CH.CC'

và BH.BB'=BA'.BC (1)

và CH.CC'=CA'.BC(2)

cộng 1 và 2 => BH.BB'+CH.CC'=BC2

nên BC'.BA+CB'.CA=BC2

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
HD
21 tháng 2 2019 lúc 14:53

Giải :

\(S_{ABD}+S_{ACD}=S_{ABC}\).

\(\frac{1}{2}AB\cdot AD\cdot\sin\frac{A}{2}+\frac{1}{2}AD\cdot AC\cdot\sin\frac{A}{2}=\frac{1}{2}AB\cdot AC\cdot\sin A\)

\(\Rightarrow\frac{1}{2}AD\cdot\sin\frac{A}{2}\left(AB+AC\right)=\frac{1}{2}AB\cdot AC\cdot2\cdot\sin\frac{A}{2}\cdot\cos\frac{A}{2}\)

\(\Rightarrow\frac{2\cdot AB\cdot AC\cdot\cos\frac{A}{2}}{AB+AC}\) (đpcm).

Bình luận (0)
NT
Xem chi tiết
AT
20 tháng 6 2021 lúc 11:46

a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp

\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)

\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)

\(=AH^2.AC=AF.AC.AC=AF.AC^2\)

c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)

\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)

\(\Rightarrow AH^3=BC.BE.CF\)

Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)

Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)

\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)

Bình luận (0)
LM
Xem chi tiết
DD
25 tháng 8 2017 lúc 14:50

Góc B bao nhiêu độ

Bình luận (1)
KT
6 tháng 10 2017 lúc 9:30

Ta có hình vẽ như sau:

Trong tam giác vuông ACH có:

AC2=AH2+HC2=AH2+(BC-BH)2=AH2+BC2+BH2-2BCBH

Trong tam giác vuông ABH có:

AH2+BH2=AB2 và BH=AB. cosB hay BH=c.cosB=> ĐPCM


A B C H

Bình luận (0)
NM
Xem chi tiết
NA
Xem chi tiết