tìm tất cả các số nguyên dương x,y sao cho x2+3y và y2+3x là các số chính phương
tìm tất cả các số nguyên dương x;y sao cho các số: (x^2) + 3y và y^2 +3x đều là các ssoos chính phương
giúp mk vs !
Tìm x;y là số nguyên dương sao cho x2 +3y và y2 +3x đều là số chính phương
bn Lê Thị Thu Minh xàm lone thế bn,bt ko lm hay là dell bt ns rứa cho mng tưởng mk giỏi.Bt mà ko lm thì cút dell phải cmt,dell bt lm thì ns luôn.
Tìm tất các số nguyên dương x,y sao cho các số x^2+3y và y^2+3x đều là các số chính phương
GIẢI CÁI NHA!
Tìm tất các số nguyên dương x,y sao cho các số x^2+3y và y^2-3x đều là các số chính phương
AI LÀM NHANH NHẤT MÌNH LIKE NHÉ!
Tìm tất cả các số nguyên dương x để x
2 + 8x là số chính phương.
a. tìm tất cả các số nguyên dương n sao cho 3n +63 là bình phương của một số nguyên dương .
b. tìm các số nguyên x,y thõa mãn x2 + 3y2 = ( 3y+1) x
a) Tìm tất cả n c Z sao cho n2 + 2002 là một số chính phương.
b) Tìm các số nguyên dương n sao cho x = 2n + 2003 và y = 3n + 2005 là các số chính phương
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
Tìm x;y là số nguyên dương sao cho x^2 + 3y và y^2 + 3x đều là số chính phương
Bài 1. Tìm tất cả các số nguyên dương x để x2 + 8x là số chính phương.
-Đặt \(x^2+8x=a^2\)
\(\Rightarrow x^2+8x+16=a^2+16\)
\(\Rightarrow\left(x+4\right)^2-a^2=16\)
\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)
-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)
\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)
\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)
\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)
-Vậy \(x\in\left\{0;1\right\}\)