GTNN cua x^2-2x-3
tìm gtnn cua:|2x-3|+2|x-1|
Đặt \(A=\left|2x-3\right|+2\left|x-1\right|\)
\(\Rightarrow A=\left|2x-3\right|+\left|2x-2\right|=\left|2x-3\right|+\left|2-2x\right|\)
\(\Rightarrow A\ge\left|2x-3+2-2x\right|=\left|-1\right|=1\)
Dấu " = " xảy ra \(\Leftrightarrow\left(2x-3\right)\left(2-2x\right)\ge0\)\(\Leftrightarrow\left(2x-3\right)\left(1-x\right)\ge0\)
TH1: \(\hept{\begin{cases}2x-3\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
TH2: \(\hept{\begin{cases}2x-3\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\1\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( vô lý )
Vậy \(minA=1\Leftrightarrow1\le x\le\frac{3}{2}\)
tim gtnn cua A=x^2+y^2+2xy+2x+2y+3
=(x^2+y^2+2xy)+(2x+2y)+3
=((x+y)2 +2(x+y) +1)+2
=(x+y+1)2+2
vậy Amin=2
\(A=x^2+y^2+2xy+2x+2y+3\)
<=>\(A=x^2+2x\left(y+1\right)+y^2+2y+3\)
<=>\(A=x^2+2x\left(y+1\right)+\left(y^2+2y+1\right)+2\)
<=>\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2+2\)
<=>\(A=\left(x+y+1\right)^2+2\ge2\)
voi x > 1/2
tim gtnn cua D=x/3 + 5/2x-1
cho x>=2.Tim gtnn cua P=\(2x+\frac{3}{x}+\frac{4}{x^2}\)
tim GTNN cua \(E=\frac{3}{-x^2+2x+4}\)
\(E=\frac{3}{-x^2+2x+4}\)
\(E=\frac{-3}{\left(x^2-2x+1\right)-5}\)
\(E=\frac{-3}{\left(x-1\right)^2-5}\ge\frac{-3}{-5}=\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(E\) là \(\frac{3}{5}\) khi \(x=1\)
Chúc bạn học tốt ~
B=/2x-100/ +/200-2x/ tìm GTNN cua B
C=/x-70/+/20+x/ timf GTNN cua C
D=/x-80/+/x-200/ timfGTTN cua D
tìm gtnn cua phân thức sau biết x>3 :
x^2+2x-9
--------------
x-3
gtnn cua p=(x-1)(2x+3)
P=(x-1)(2x+3)
=2x2-2x+3x-3
=2x2+x-3
\(=2\left(x^2+\frac{1}{2}x+\frac{1}{16}-\frac{49}{16}\right)=2\left(x+\frac{1}{4}\right)^2-\frac{49}{8}\ge-\frac{49}{8}\)
dấu = xảy r khi x=-1/4
a)Tìm gtnn của A=x^2+2x+3 ; B=x^2+x+2
b)Tìm gtln cua E=-x^2+6x+1 ; P=x(2-x)
a) \(x^2+2x+3\)
\(=x^2+2x+1+2\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Ta có:
\(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+1\right)^2+2\ge2\)
Vậy MinA = 2 khi
\(\left(x+1\right)^2+2=2\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
MIN A = 2 <=> X= -1
MIN B = 7/4 <=> X = -1/2
MAX E = 10<=> X= 3
MAX P = `<=> X= 1