Những câu hỏi liên quan
BN
Xem chi tiết
LO
5 tháng 8 2016 lúc 12:52

Ta có : \(\frac{a+b}{c+d}\) = \(\frac{b+c}{d+a}\) 

Cộng 1 vào mỗi tỉ só ta được \(\frac{a+b+c+d}{c+d}\) = \(\frac{a+b+c+d}{a+d}\) 

- Nếu a+b+c+d khác 0 thì c+d = a+d nên a=c

- Nếu a+b+c+d = 0 thì bài toán được chứng minh ( xảy ra được a+b+c+d = 0 ; chẳng hạn a=1; b=2; c=3; d=-6)

Bình luận (0)
PT
5 tháng 8 2016 lúc 12:56

nếu a+b+c+d khác 0 thì ta có

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)

a+b=b+c

—>a=c

 

Bình luận (0)
PT
5 tháng 8 2016 lúc 12:59

còn cm a+b+c+d=0 thì dễ oy bn nha

Bình luận (0)
CT
Xem chi tiết
TT
29 tháng 8 2016 lúc 20:09

bacd=dacb vay ...

Bình luận (0)
SQ
10 tháng 12 2016 lúc 20:18

tự làm đi cái này không khó 

Bình luận (0)
TH
Xem chi tiết
VT
4 tháng 12 2019 lúc 17:56

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

+ Nếu \(a+b+c+d\ne0\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

+ Nếu \(a+b+c+d=0\)

\(\Rightarrow\) hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NH
Xem chi tiết
LD
24 tháng 6 2021 lúc 8:46

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)

<=> ad + a2 + bd + ab = bc + bd + c2 + cd

<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0

<=> ad + a2 + ab - bc - c2 - cd = 0

<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0

<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0

<=> ( a - c )( a + b + c + d ) = 0

<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
24 tháng 6 2021 lúc 9:24

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

TH1: \(a+b+c+d=0\Rightarrowđpcm\)

TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)

\(\Rightarrow a+b=b+c\)

\(\Rightarrow a=c\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
25 tháng 6 2021 lúc 12:36

=10000 biết8

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
DT
30 tháng 7 2015 lúc 20:45

Ta có : a+b/b+c = c+d/d+a 
=> (a+b)/(c+d)= (b+c)/(d+a) 
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1 
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a) 
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a 
- Nếu a+b+c+d = 0 (điều phải chứng minh)

Bình luận (0)
H24
7 tháng 3 2020 lúc 18:29

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
AL
3 tháng 8 2017 lúc 15:28

ta có : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\Rightarrow\frac{\left(a+b\right)}{\left(d+c\right)}=\frac{\left(c+b\right)}{\left(d+a\right)}\)

\(\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}+1=\frac{\left(b+c\right)}{\left(d+a\right)}+1\)

Hay : \(\frac{\left(a+b+c+d\right)}{\left(c+d\right)}=\frac{\left(b+c+d+a\right)}{\left(d+a\right)}\)

- nếu a + b + c + d = 0 thì : c + d = d + a

\(\Rightarrow\)c = a

- Nếu a + b + c + d = 0 ( điều phải chứng minh ) 

Bình luận (0)
PK
Xem chi tiết
LC
Xem chi tiết
H24
4 tháng 12 2019 lúc 18:00

a+b/b+c=c+d/d+a

=>(a+b)(d+a)=(b+c)(c+d)

=>ad+a^2+bd+ab=bc+bd+c^2+cd

=>ad+a^2+ab=c^2+bc+cd

=>bạn làm tiếp nhé

Bình luận (0)
 Khách vãng lai đã xóa