Những câu hỏi liên quan
ND
Xem chi tiết
DA
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Bình luận (0)
 Khách vãng lai đã xóa
DC
26 tháng 11 2021 lúc 19:30

???????????????????
 

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
CH
Xem chi tiết
NL
12 tháng 8 2021 lúc 15:23

- Với \(n=2\Rightarrow P_2=2!=2=1!+1\) (đúng)

- Với \(n=3\Rightarrow\left\{{}\begin{matrix}P_3=3!=6\\2P_2+P_1+1=2.2!+1+1=6\end{matrix}\right.\) (đúng)

- Giả sử đẳng thức đúng với \(n=k\ge2\) hay:

\(P_k=\left(k-1\right)P_{k-1}+\left(k-2\right)P_{k-2}+...+P_1+1\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay

\(P_{k+1}=k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1\)

Thật vậy, ta có:

\(k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1=k.P_k+P_k\)

\(=\left(k+1\right)P_k=P_{k+1}\) (đpcm)

Bình luận (0)
H24
Xem chi tiết
NC
6 tháng 2 2020 lúc 9:41

Em xem lại đề nhé:

Với \(n\inℕ^∗\), chọn n = 1 thì \(C=\frac{1}{1+1}=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
CP
Xem chi tiết
NM
11 tháng 10 2021 lúc 11:26

\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)

Bình luận (0)
LL
11 tháng 10 2021 lúc 11:26

a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)

b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

Bình luận (0)
NA
Xem chi tiết