Những câu hỏi liên quan
TM
Xem chi tiết
TK
Xem chi tiết
TS
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
NL
15 tháng 3 2022 lúc 11:42

Quy tắc chia hết cơ bản: với các số nguyên dương ta luôn có \(a^n-b^n\) chia hết \(a-b\)

Do đó \(199^x-2^x⋮197\)

\(\Rightarrow p^y⋮197\Rightarrow p⋮197\) (do 197 là số nguyên tố)

\(\Rightarrow p=197\)

Pt trở thành: \(199^x-2^x=197^y\)

- Với \(x=1\Rightarrow y=1\)

- Với \(x=2\Rightarrow199^2-2^2=197.201\) chia hết 201, trong khi \(197^y\) ko chia hết cho 201 (ktm)

- Với \(x\ge3\) \(\Rightarrow2^x⋮8\)

TH1: Nếu x lẻ \(\Rightarrow\)\(199^x\equiv-1\left(mod8\right)\Rightarrow199^x-2^x\equiv-1\left(mod8\right)\) 

\(y\) chẵn \(\Rightarrow197^y\equiv5^y\left(mod8\right)\equiv5^{2k}\left(mod8\right)\equiv25^k\left(mod8\right)\equiv1\left(mod8\right)\) (ktm)

\(y\) lẻ \(\Rightarrow197^y\equiv5^{2k+1}\left(mod8\right)\equiv5.25^k\left(mod8\right)\equiv5\) (mod8) (ktm)

 TH2:\(x\) chẵn \(\Rightarrow199^x\equiv1\left(mod8\right)\Rightarrow199^x-2^x\equiv1\left(mod8\right)\)

\(y\) lẻ \(\Rightarrow\) tương tự TH1 ta có \(197^y\equiv5\left(mod8\right)\) (ktm)

\(\Rightarrow y\) chẵn

Khi x;y cùng chẵn, ta có \(199^x\equiv1\left(mod3\right)\) và \(2^x\equiv1\left(mod3\right)\)

\(\Rightarrow199^x-2^x⋮3\Rightarrow197^y⋮3\) (vô lý)

Vậy với \(x\ge3\) ko tồn tại bộ số nguyên dương nào thỏa mãn 

Hay có đúng 1 bộ số thỏa mãn yêu cầu: \(\left(x;y;p\right)=\left(1;1;197\right)\)

Bình luận (0)
ND
Xem chi tiết
H24
23 tháng 11 2020 lúc 21:51

mai giải hết nhé

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2020 lúc 21:14

p=2 không thỏa

p=3 thỏa

nếu p>3 thì p chia 3 dư 1 hoặc 2

p chia 3 dư 1 => p+14 chia hết cho 3; lớn hơn 3 => vô lí

p chia 3 dư 2 => p+40 chia hết cho 3; lớn hơn 3 => vô lí

vậy p=3

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2020 lúc 21:15

\(\text{ nếu }x=2\text{ thì: }x^2+45=49=7^2\text{ nên }y=7\left(\text{tm}\right)\)

\(+,x>2\text{ thì x lẻ nên }x^2\text{ chia 4 dư 1}\left(\text{bạn tự cm}\right)\)

\(\Rightarrow x^2+45\text{ chia 4 dư 2 nên }y^2\text{ chia 4 dư 2 }\left(\text{vô lí}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TX
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết