\(A=\frac{x^2+y^2}{xy}+\frac{\sqrt{xy}}{x+y}\)
Rút gọn A
cho biểu thức A = \(\text{[}\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x+\sqrt{y}}}\text{]}:\text{[}\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\text{]}\)
a, Rút gọn A
b, Tính giá trj B khi x=3 , y=4+2\(\sqrt{3}\)
ĐKXĐ : \(x,y>0\)
a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)
\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)
b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
A=\(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\)
rút gọn a
tính a khi x=\(\sqrt{4+2\sqrt{3}}\)
cmr \(\frac{x}{y}=\frac{x+1}{y+5}\)
\(A=\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)+y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-y^2+x^2}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}=\frac{y+x}{y-x}\)
KO CÓ GIÁ TRỊ y sao tính đây !!!!!!
CÒN \(x=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) nhé
Rút gọn biểu thức sau:
\(A=\frac{x+y+2\sqrt{xy}}{\sqrt{xy}+x}.\frac{x+y-2\sqrt{xy}}{\sqrt{xy}-y}\) với xy > hoặc = 0 và x # y
\(A=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}.\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}}.\frac{\sqrt{x}-\sqrt{y}}{\sqrt{y}}=\frac{x-y}{\sqrt{xy}}\)
Rút gọn:
\(A=\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]\)
\(x=\sqrt{2-\sqrt{3}};y=\sqrt{2+\sqrt{3}}\)
Rút gọn biểu thức:
A= \(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}\)
\(=\sqrt{y}-\sqrt{x}\)
rút gọn biểu thức:
\(A=\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]\)
A=\(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right).\)
a) Rút gọn biểu thức A
b) giá trị của A khi x=3,y=4+2\(\sqrt{3}\)
Giúp mik với ~ mik đag cần gấp! tks nhìu nha!!
Cho biểu thức:
\(A=\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right]\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết \(x=3;y=4+2\sqrt{3}\)
Cho biểu thức
A = \(\left(\frac{\sqrt{x}}{x+\sqrt{xy}}+\frac{\sqrt{y}}{y-\sqrt{xy}}\right):\frac{2\sqrt{xy}}{x-y}\)
(x>0; y>0; x khác y)
a. Rút gọn A
b. Tìm giá trị của x và y để A =1
\(A=\left(\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{y}-\sqrt{x}}\right):\dfrac{2\sqrt{xy}}{x-y}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}}{x-y}:\dfrac{2\sqrt{xy}}{x-y}=\dfrac{-2\sqrt{y}}{2\sqrt{xy}}=\dfrac{-1}{\sqrt{x}}=\dfrac{-\sqrt{x}}{x}\)
b, Ta có \(A=\dfrac{-1}{\sqrt{x}}=1\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)
Vậy pt vô nghiệm