Những câu hỏi liên quan
H24
Xem chi tiết
HP
27 tháng 1 2021 lúc 19:14

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)

Bình luận (0)
NH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
MP
Xem chi tiết
PQ
22 tháng 2 2018 lúc 11:03

Ta có : 

\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)

\(\Leftrightarrow\)\(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)

\(\Leftrightarrow\)\(2P=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)

\(\Leftrightarrow\)\(2P=\left(x-\sqrt{y}+\frac{2}{3}\right)+\left(x+\frac{1}{3}\right)^2+\left(y^2-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

\(\Leftrightarrow\)\(2P\ge\frac{4}{3}\)

\(\Rightarrow\)\(P\ge\frac{2}{3}\)

Vậy \(P_{min}=\frac{2}{3}\)

Bình luận (0)
PQ
22 tháng 2 2018 lúc 11:17

àk chỗ \(\left(x-\sqrt{y}+\frac{2}{3}\right)\) mình nhầm nhé phải là \(\left(x-\sqrt{y}+\frac{2}{3}\right)^2\) 

hihi tại nhìu số quá nên nhìn nhầm sorry :'P

Bình luận (0)
TU
Xem chi tiết
XO
29 tháng 1 2022 lúc 10:07

\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)

\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)

"=" khi x = y = 1/2

Bình luận (0)
TU
29 tháng 1 2022 lúc 9:44

giúp mình voi ah

 

Bình luận (0)
H24
Xem chi tiết
BH
Xem chi tiết
H24
29 tháng 9 2019 lúc 9:18

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

Bình luận (0)
BH
30 tháng 9 2019 lúc 9:59

dit me may 

Bình luận (1)
LK
19 tháng 7 2020 lúc 19:01

bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ? 

Bình luận (0)
 Khách vãng lai đã xóa
IN
Xem chi tiết
AR
Xem chi tiết
H24
19 tháng 9 2019 lúc 16:43

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

Bình luận (0)
LS
20 tháng 9 2019 lúc 7:11

khó quá đây là toán lớp mấy

Bình luận (0)
LT
20 tháng 9 2019 lúc 10:10

Bài 2: Thực sự không chắc lắm về cách này

\(y=\frac{x^2}{x^2-5x+7}\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)

Coi pt trên là pt bậc 2 ẩn x, dùng điều kiện có nghiệm của pt bậc 2 ta có \(\Delta=25y^2-28y\left(y-1\right)=28y-3y^2\ge0\Leftrightarrow28y\ge3y^2\)

Xét y âm, chia 2 vế của bất đẳng thức cho y âm ta được \(y\ge\frac{28}{3}\)không thỏa

Xét y dương ta thu được \(y\le\frac{28}{3}\), cái này thì em không không biết có nghiệm x không nhờ mọi người kiểm tra dùm

Vậy Maxy=28/3 còn Miny=0 (cái min thì dễ hà )

Bình luận (0)