Những câu hỏi liên quan
TN
Xem chi tiết
XO
30 tháng 7 2020 lúc 21:42

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

Bình luận (1)
 Khách vãng lai đã xóa
HN
2 tháng 12 2023 lúc 20:44

a) A=10^2020+1/10^2021+1 < 10^2020+1+9/10^2022+1+9 =         

10.(10^2021+1)/10.(10^2022+1) = 10^2021+1/10^2022+1 = B

Vậy A < B.

Bình luận (0)
NH
Xem chi tiết
HU
21 tháng 3 2020 lúc 22:05

N =2019+2020/2020+2021

=2019/2020+2021  +   2020/2020+2021

Ta có:

2019/2020>2019/2020+2021

2020/2021 > 2020/2020+2021

=>M>N

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
KN
26 tháng 4 2019 lúc 7:35

Ta có :

\(N=\frac{2018+2019+2020}{2019+2020+2021}\)

\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Leftrightarrow M>N\)

Bình luận (0)
KA
28 tháng 7 2020 lúc 9:19

Trả lời:

Ta có: 

\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)

hay \(M>N\)

Vậy \(M>N\)

Bình luận (0)
 Khách vãng lai đã xóa
VA
28 tháng 7 2020 lúc 9:24

Ta có :

N = \(\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow M>N\)

Bình luận (0)
 Khách vãng lai đã xóa
SL
Xem chi tiết
NT
6 tháng 3 2023 lúc 14:53

Tham khảo:

loading...

Bình luận (0)
DX
Xem chi tiết

Giải:

Ta có: N=2019+2020/2020+2021

=>N=2019/2020+2021 + 2020/2020+2021

Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021

=>M>N

Vậy ...

Chúc bạn học tốt!

Bình luận (0)
H24
17 tháng 4 2021 lúc 18:07

Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)

            \(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)

\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)

\(\Rightarrow M>N\)

Bình luận (0)
CN
Xem chi tiết
HS
26 tháng 8 2020 lúc 8:42

a) Ta có : \(\frac{-60}{12}=-5=-\frac{25}{5}\)

\(-0,8=-\frac{8}{10}=-\frac{4}{5}\)

Mà -25 < -4 nên \(\frac{-25}{5}< \frac{-4}{5}\)=> \(\frac{-60}{12}< -0,8\)

b) Ta có : \(\frac{2020}{2019}=1+\frac{1}{2019}\)

\(\frac{2021}{2020}=1+\frac{1}{2020}\)

Vì \(\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2020}{2019}>\frac{2021}{2020}\)

c) \(\frac{10^{2018}+1}{10^{2019}+1}=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)(1)

\(\frac{10^{2019}+1}{10^{2020}+1}=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+10}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)(2)

Đến đây tự so sánh rồi nhé

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
DL
Xem chi tiết
HT
19 tháng 4 2019 lúc 21:12

Nhân 79 vào cả hai vế rồi tự làm

Bình luận (0)
DL
19 tháng 4 2019 lúc 21:15

LÀm đỡ mk tí mk ko có nhiều tgian vi còn 5 đề nữa

Bình luận (0)
TT
Xem chi tiết
H24
28 tháng 12 2020 lúc 12:29

Vì 2019 + 2020 < 2019 + 2021 nên A < B

Bình luận (0)
 Khách vãng lai đã xóa