Những câu hỏi liên quan
ZH
Xem chi tiết
PH
Xem chi tiết
CH
23 tháng 4 2018 lúc 10:21

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 \(\Rightarrow ab=20\left(cm\right)\)

Xét tam giác ABC có:

  AC < AB < BC nên \(\widehat{CBA}< \widehat{BCA}< \widehat{BAC}.\)

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

\(\Rightarrow\Delta EHC=\Delta EHA\)  (Hai cạnh góc vuông)

Do \(\Delta EHC=\Delta EHA\Rightarrow\widehat{ECA}=\widehat{EAC}\)

\(\Rightarrow\widehat{EBA}=\widehat{EAB}\)    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

\(\frac{AG}{AC}=\frac{1}{3}\Rightarrow AG=\frac{1}{5}.15=5\left(cm\right)\)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có \(\Delta ECH=\Delta F'CH\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow CE=CF'\)

Lại có \(CE=\frac{1}{2}BC=\frac{1}{2}CN\Rightarrow CF'=\frac{1}{2}CN\)

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.

Bình luận (0)
H24
17 tháng 8 2018 lúc 19:59

Bài giải : 

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 ⇒ab=20(cm)

Xét tam giác ABC có:

  AC < AB < BC nên ^CBA<^BCA<^BAC.

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

⇒ΔEHC=ΔEHA  (Hai cạnh góc vuông)

Do ΔEHC=ΔEHA⇒^ECA=^EAC

⇒^EBA=^EAB    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

AGAC =13 ⇒AG=15 .15=5(cm)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có ΔECH=ΔF'CH   (Cạnh góc vuông và góc nhọn kề)

⇒CE=CF'

Lại có CE=12 BC=12 CN⇒CF'=12 CN

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.

Bình luận (0)
NL
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 6 2017 lúc 10:00

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

Bình luận (0)
HN
Xem chi tiết
TP
Xem chi tiết
TP
14 tháng 10 2021 lúc 20:46

cho mk xin cả cách giải nha

Bình luận (0)
GH
Xem chi tiết
HL
Xem chi tiết
VN
10 tháng 9 2018 lúc 2:16

Chọn D.

Áp dụng quy tắc momen lực:

P.GO = F.BO

Bình luận (0)
H24
Xem chi tiết