\(\sqrt{2016}+\sqrt{2017}< \frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}\)
Chứng minh rằng
\(\frac{\sqrt[2016]{9}+\sqrt[2016]{16}+\sqrt[2016]{25}}{\sqrt[2016]{12}+\sqrt[2016]{15}+\sqrt[2016]{20}}>\frac{\sqrt[2017]{12}+\sqrt[2017]{15}+\sqrt[2017]{20}}{\sqrt[2017]{9}+\sqrt[2017]{16}+\sqrt[2017]{25}}\)
Không dùng máy tính, hãy so sánh: \(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}v\text{à}\sqrt{2016}+\sqrt{2017}\)
\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)
\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)
=> Bằng nhau
\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)
\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)
\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)
Rút gọn biểu thức : A=\(\frac{1+2017\sqrt{2016}-2016\sqrt{2017}}{\sqrt{2016}+\sqrt{2017}+\sqrt{2016.2017}}\)
Giải giúp mình nhé !!!
\(A=\frac{2017-2016+2017\sqrt{2016}-2016\sqrt{2017}}{\sqrt{2016}+\sqrt{2017}+\sqrt{2016.2017}}\)
= \(\frac{\left(\sqrt{2017}-\sqrt{2016}\right)\left(\sqrt{2017}+\sqrt{2016}\right)+\sqrt{2016.2017}\left(\sqrt{2017}-\sqrt{2016}\right)}{\sqrt{2016}+\sqrt{2017}+\sqrt{2016.2017}}\)
= \(\frac{\left(\sqrt{2017}-\sqrt{2016}\right)\left(\sqrt{2016}+\sqrt{2017}+\sqrt{2016.2017}\right)}{\sqrt{2016}+\sqrt{2017}+\sqrt{2016.2017}}\)
= \(\sqrt{2017}-\sqrt{2016}\)
So sánh Q=\(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{3}+\sqrt{4}}{1+\sqrt{3}+\sqrt{4}}+...+\frac{1-\sqrt{2016}+\sqrt{2017}}{1+\sqrt{2016}+\sqrt{2017}}\)với R=\(\sqrt{2017}-1\)
Ta có:
\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)
\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)
Suy ra:
\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)
Vậy Q < R.
Tính:
a. \(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
b. \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
a )\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
=\(\sqrt{2+3+1+2\sqrt{2.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}}\)
=\(\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}\)
=\(\sqrt{2}+\sqrt{3}+1\)
Tính P=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+\(\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
Với mọi \(n\in N.\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó
\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3+3\sqrt{4}}}+...+\frac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
Tính giá trị của biểu thức .
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
tính: \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
Xét với x > 0 : \(\sqrt{1+\left(x-1\right)^2+\frac{\left(x-1\right)^2}{x^2}}+\frac{x-1}{x}=\sqrt{\frac{\left(x^2-x+1\right)^2}{x^2}}+\frac{x-1}{x}\)
\(=\frac{x^2-x+1}{x}+\frac{x-1}{x}=\frac{x^2}{x}=x\)
Áp dụng với x = 2017 suy ra biểu thức cần tính có giá trị bằng 2017
Tính A=\(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
\(A=\sqrt{2016^2+\frac{2017}{2017}+\frac{2016^2-1}{2017^2}-\frac{1}{2017^2}}+\frac{2016}{2017}\)
\(A=\sqrt{2016^2+\frac{1}{2017^2}+\frac{2015.2017}{2017^2}+\frac{2017}{2017}}+\frac{2016}{2017}\)
\(A=\sqrt{2016^2+2.2016.\frac{1}{2017}+\frac{1^2}{2017^2}}+\frac{2016}{2017}\)
\(A=\sqrt{\left(2016+\frac{1}{2017}\right)^2}+\frac{2016}{2017}\)
\(A=\left(2016+\frac{1}{2017}\right)+\frac{2016}{2017}\)
A = 2017
Chúc bạn làm bài tốt