Tìm số tự nhiên x để \(3^x+80\) là số chính phương
Tìm số tự nhiên x để \(3^x+80\) là số chính phương
Tìm Số tự nhiên x để 13x+3 là số chính phương
Để 13x+3 là số chính phương đặt 13.x + 3 = k² (k ∈ N) => x=1
<=>13.1+3=k2
13+3=k2
16=k2
=>k=4
=>x=16
\(\text{Tìm số tự nhiên x để }x^4+x^3+1\text{ là số chính phương}\)
\(A=x^4+x^3+1\) là số chính phương <=> \(k^2A,k\inℕ^∗\)cũng là số chính phương
Ở đây ta xét k=2\(\Rightarrow4A=4x^4+4x^3+4\)
Nếu \(x=1\Rightarrow4A=12\)không là số chinh phương
Xét \(2\le x\Rightarrow4\le x^2\Rightarrow4A\le4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
Ý tưởng ở đây là chứng minh 4A nằm giữa 2 sô chính phương liên tiếp, từ đó ta ép 4A vào rất ít trường hợp khả thi
Vậy nên ta chứng minh \(4A>\left(2x^2+x-1\right)^2\)
\(\Leftrightarrow4x^4+4x^3+4>4x^4+x^2+1+4x^3-4x^2-2x\)
\(\Leftrightarrow3x^2+2x+3>0\)Đúng với mọi số tự nhiên x
Vậy \(\left(2x^2+x-1\right)^2< 4A\le\left(2x^2+x\right)^2\)
Lúc này 4A là số chính phương khi và chỉ khi \(4A=\left(2x^2+x\right)^2\Leftrightarrow x=2\)
còn có 0 nữa nhé bạn. bạn xét th1 là 0
th2 là 1
và th3 mới là x lớn hơn hoặc bằng 2
Tìm số tự nhiên N để B = 2^4 x 3^3 x 5^2 là số chính phương ?
ĐỂ n^2 +n +2 là số chính phương
=> n^2 +n+2 =a^2 (với a thuộc n)
=> 4n^2 +4n +8 =4a^2
=> (2n+1)^2 +7 =4a^2
=> 4a^2 -(2n+1)^2 =7
=> (2a -2n -1)(2a +2n+1) =7 (1)
do 7>0 , 2a +2n +1>0(do a,n là số tự nhiên) => 2a-2n-1 >0
(1) => 2a-2n-1 ,2a+2n+1 thuộc ước dương của 7 mà 2a +2n +1 >2a-2n-1
=>
{2a+2n+1=7 (2)
{2a-2n-1=1(3)
=> 4n+2 =6 =. 4n +2=6 => n=4 [cái này là lấy (2)-(3) ]
vậy n=1 là số cần tìm
~~~~~~~~~~~~~~
bn nên sửa lại đề bài thế này :
Tìm các số tự nhiên n để n^2+n+2 là 1 số chính phương.?
tk mk nha $_$
Câu 1: Tìm số tự nhiên x để: 3x+2+3x+1+3x<1053
Câu 2: Tìm số tự nhiên n sao cho: 1!+2!+3!+...+n! là số chính phương
tìm số tự nhiên x để 2^x +1 là số chính phương
Giả sử \(^{2^x+1=a^2}\), ta có:
<=> \(2^x=a^2-1\)
<=>\(2^x=a^2-a+a-1\)
<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)
<=>\(2^x=\left(a-1\right)\left(a+1\right)\)
=>
\(a-1=2^y\)<=>\(a=2^y+1\)\(a+1=2^z\)<=>\(a=2^z-1\)(x=y+z)
=> \(2^y+1=2^z-1\)
<=>\(2^z-2^y=2\)
<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)
<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)
Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:
\(2^{y-1}=1\)<=> y-1 = 0 <=> y=1\(2^{z-1}=2\)<=> z-1 = 1 <=> z=2=> x = y+z = 1+2 = 3.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Mọi người giúp đỡ mình với.
Câu 1:Tìm 4 số tự nhiên biết tổng nghịch đảo của chúng bằng 1
Câu 2:Tìm 4 số tự nhiên biết tổng bình phương của chúng bằng 1
Câu 3:Tìm p để 4p+1 là số chính phương
Câu 4:Tìm số nguyên dương để x2 +x +6 là số chính phương
Tìm số tự nhiên x để x^2+6x+2008 là một số chính phương .