Những câu hỏi liên quan
TA
Xem chi tiết
TA
Xem chi tiết
SN
21 tháng 7 2015 lúc 10:35

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{47}-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)\(=\frac{1}{26}+...+\frac{1}{50}\)

Bình luận (0)
TA
Xem chi tiết
DA
Xem chi tiết
PH
26 tháng 1 2023 lúc 22:06

So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2

Bình luận (0)
NC
26 tháng 1 2023 lúc 22:07

S=

=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50

P=

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50=1

vậy s/p = 1/50

Bình luận (0)
LG
Xem chi tiết
TA
2 tháng 3 2019 lúc 5:20

Tải PHOTOMATH bạn nhé

Bình luận (0)
NH
Xem chi tiết
GG
4 tháng 2 2018 lúc 12:36

A = - ( 5 - 6 ) - ( 3 - 4 + 5 - 7 )

A = -5 + 6 - 3 + 4 - 5 + 7

A = ( 6 + 4 ) + ( -5 + (-5) ) + ( -3 + 7 )

A = 10 + (-10) + 4

A = 0 + 4

A = 4

P = ( 1 + 3 + 5 + ... + 47 + 49 ) - ( 2 + 4 + 6 + ... + 48 + 50 )

P = \(\frac{\left(1+49\right)\cdot\left(\left(49-1\right):2+1\right)}{2}\)  -  \(\frac{\left(2+50\right)\cdot\left(\left(50-2\right):2+1\right)}{2}\)

P = \(625-650\)

P = \(-25\)

Bình luận (0)
TD
Xem chi tiết
TL
13 tháng 3 2015 lúc 7:03

\(p=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+\frac{4}{46}+...+\frac{48}{2}+\frac{49}{1}\)

\(p=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+\left(\frac{4}{46}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)

(do ta tách số 49 thành tổng của 49 số 1, sau đó nhóm mỗi phân số trên với 1)

\(p=\left(\frac{1}{49}+\frac{49}{49}\right)+\left(\frac{2}{48}+\frac{48}{48}\right)+\left(\frac{3}{47}+\frac{47}{47}\right)+\left(\frac{4}{46}+\frac{46}{46}\right)+...+\left(\frac{48}{2}+\frac{2}{2}\right)+1\)

\(p=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+\frac{50}{46}+...+\frac{50}{2}+1\)

\(p=50.\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+...+\frac{1}{2}\right)+1=50.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)+1=50.s+1\)=> p = 50.s + 1

Bình luận (0)
LT
Xem chi tiết
VD
Xem chi tiết