Những câu hỏi liên quan
VT
Xem chi tiết
LN
Xem chi tiết
BD
5 tháng 8 2018 lúc 7:35

Ngọc Linh tự vẽ hình nha!

- Vẽ tam giác đều BCM => BC= MC (1)

- Xét tam giác ACB: ACD+DCB = 45

=> DCB=45-30=15

mà ACM+ACB=60 => ACM=60-45=15

=> DCB=ACM (2)

Cminh tam giác AMB=AMC(C.C.C)\

=>AMC=AMB=M/2=60/2=30

mà AMC=30 => AMC=DBC(3)

Từ (1),(2),(3) => tam giác DBC=AMC(g.c.g)

=> cd=ca

Bình luận (0)
LN
5 tháng 8 2018 lúc 11:08

Cách của xoài nhanh hơn, diệp à

Bình luận (0)
MN
Xem chi tiết
HH
Xem chi tiết
CW
20 tháng 8 2016 lúc 8:43

A B C D M N

Hình như M,N ko thuộc BC ???? Hay là hình mình sai ta????

Bình luận (0)
HH
20 tháng 8 2016 lúc 9:14

Cold Wind bạn kéo dài DN về phía D là nó cắt BC mà. Nếu có câu trả lời thì giúp mình nha. 

Bình luận (0)
NT
Xem chi tiết
CT
17 tháng 2 2019 lúc 14:56

a, xét tam giác AMC và tam giác DMB có:

góc AMC= góc BMD(đối đỉnh)

AM=DM(gt)

BM=CM(gt)

suy ra  tam giác AMC=tam giác BMD(c-g-c)

Bình luận (0)
NT
17 tháng 2 2019 lúc 14:58

Mình không biết làm câu b giúp mình với.....

Bình luận (0)
CT
17 tháng 2 2019 lúc 14:59

bn có viết thiếu đề ko

Bình luận (0)
NH
Xem chi tiết
H24
6 tháng 3 2019 lúc 23:23

A B C O 1 2 1 2 1 1

a) (thay vô y như toán đại í )

t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^

t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ

=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^

=> BOC^=BAC^+ABO^+ACO^

b) B2^+C2^=90 độ - A1^:2 

=> B2^+C^2= 90 độ - (180 độ  - B1^ - B2^ - C1^ - C2^):2

=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2

=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)

=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^

Bình luận (0)
H24
6 tháng 3 2019 lúc 23:26

có mấy cái t vt: B^1 tức là góc B1 đó, vt nhầm :((

Bình luận (0)
LT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NH
9 tháng 2 2018 lúc 17:42

A B C O K

a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK

                 => \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\)    (1)

               + \(\widehat{OKB}\)là góc ngoài của tam giác AKC

                  =>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)

Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)

hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)

=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)

 Xét tam giác ABC có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)

=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)

Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)

Ta có: BO là tia phân giác của góc ACB

=>\(2\widehat{ABO}=\widehat{ABC}\)(**)

Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)

=>\(2\widehat{ACO}=\widehat{ACB}\)

=> CO là tia phân giác của góc ACB

Bình luận (0)
MD
11 tháng 8 2019 lúc 9:27

thank you

Bình luận (0)