Cho tam giác ABC. D là điểm nằm trong tam giác. Chứng minh \(\widehat{BDC}>\widehat{ABC}\)
CHo tam giác ABC. M là điểm nằm trong tam giác ABC. Chứng minh rằng: \(\widehat{BMC}>\widehat{BAC};\widehat{AMB}>\widehat{ACB};\widehat{AMC}>\widehat{ABC}\)
Cho tam giác ABC vuông cân tại A, D là một điểm nằm trong tam giác sao cho \(\widehat{DBC}=\widehat{DCA}=30\) độ. Chứng minh AC=DC.
Ngọc Linh tự vẽ hình nha!
- Vẽ tam giác đều BCM => BC= MC (1)
- Xét tam giác ACB: ACD+DCB = 45
=> DCB=45-30=15
mà ACM+ACB=60 => ACM=60-45=15
=> DCB=ACM (2)
Cminh tam giác AMB=AMC(C.C.C)\
=>AMC=AMB=M/2=60/2=30
mà AMC=30 => AMC=DBC(3)
Từ (1),(2),(3) => tam giác DBC=AMC(g.c.g)
=> cd=ca
Cho tam giác ABC. Điểm M nằm trong tam giác ABC sao cho \(\widehat{AMB}-\widehat{C}=\widehat{AMC}-\widehat{B}\). Chứng minh rằng AM và các đường phân giác ABM, ACM đồng quy
Cho tam giác ABC (AB=AC) Kẻ phân giác BD(D thuộc AC). Kẻ phân giác trong DM và phân giác ngoài DN của tam giác BDC (M,N thuộc BC). Chứng minh rằng \(\widehat{ADB}=3\widehat{ABD}\)
Hình như M,N ko thuộc BC ???? Hay là hình mình sai ta????
Cold Wind bạn kéo dài DN về phía D là nó cắt BC mà. Nếu có câu trả lời thì giúp mình nha.
Cho tam giác ABC có M là điểm nằm giữa B và C. Biết \(\widehat{BAM}=\widehat{CAM}\)và MB=MC. Gọi D là điễm đối xứng của MA sao cho M là trung điểm của AD.
a) Chứng minh tam giác AMC= tam giác DMB
b) Chứng minh AB=AC
c) Biết \(\widehat{ABC}\)= 600. Chứng minh tam giác ABC đều.
a, xét tam giác AMC và tam giác DMB có:
góc AMC= góc BMD(đối đỉnh)
AM=DM(gt)
BM=CM(gt)
suy ra tam giác AMC=tam giác BMD(c-g-c)
Mình không biết làm câu b giúp mình với.....
Cho tam giác ABC, O là 1 điểm nằm trong tam giác.
a)Chứng minh: \(\widehat{BOC}=\widehat{BAC}+\widehat{ABO}+\widehat{ACO}\)
b)Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{BAC}}{2}\) và tia BO là tia phân giác của \(\widehat{ABC}\)
Chứng minh: Tia CO là tia phân giác của \(\widehat{ACB}\)
a) (thay vô y như toán đại í )
t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^
t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ
=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^
=> BOC^=BAC^+ABO^+ACO^
b) B2^+C2^=90 độ - A1^:2
=> B2^+C^2= 90 độ - (180 độ - B1^ - B2^ - C1^ - C2^):2
=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2
=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)
=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^
có mấy cái t vt: B^1 tức là góc B1 đó, vt nhầm :((
Cho tam giác ABC, O là điểm nằm trong tam giác
Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\) và tia bo là tia phân giác góc B. Chứng minh rằng: Tia CO là tia phân giác góc O
Cho tam giác ABC cân tại A có \(\widehat{BAC}\) = 70 độ. Điểm D nằm trong tam giác ABC sao cho DA = DB và \(\widehat{CAD}\) = 65 độ. Tính \(\widehat{BCD}\)
Cho tam giác ABC , O là điểm nằm trong tam giác.
a. Chứng minh rằng : \(\widehat{BOC}\)= \(\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b. Biết \(\widehat{ABO}+\widehat{ACO}=90-\frac{\widehat{A}}{2}\)và tia BO là tia phân giác của góc B. Chứng minh rằng : Tia CO là tia phân giác của góc C.
a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK
=> \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\) (1)
+ \(\widehat{OKB}\)là góc ngoài của tam giác AKC
=>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)
Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)
hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)
=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)
Xét tam giác ABC có:
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)
=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)
Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)
Ta có: BO là tia phân giác của góc ACB
=>\(2\widehat{ABO}=\widehat{ABC}\)(**)
Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)
=>\(2\widehat{ACO}=\widehat{ACB}\)
=> CO là tia phân giác của góc ACB