Tìm tất cả các cặp số nguyên (m,n) sao cho: m^2+1=n^2
Tìm tất cả các cặp số nguyên (m,n) sao cho : m^2+1= 2^n
Tìm tất cả các cặp số nguyên (m,n) sao cho m^2 + 1 = 2^n
Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)
Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)
Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).
Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn.
Vậy \(n=0\)hoặc \(n=1\).
Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).
Tìm tất cả các cặp số nguyên(m,n) sao cho: \(m^2\)+1=\(2^n\)
m^2 + 1 \(\ge1\) với mọi m . Mà m, n là số nguyên => 2^n > 1 => n là số nguyên không âm.
+) TH1: n = 0
=> m^2 + 1 = 1 => m = 0 ( thỏa mãn )
+) TH2: n = 1
=> m^2 + 1 = 2 => m^2 = 1 <=> m = 1 hoặc m = - 1 thỏa mãn
+) TH3: n> 1
=> 2^n \(⋮\)4
Mà m^2 + 1 chia 4 dư 1
=> loại
Vậy ( m; n ) \(\in\){ ( 0; 0) ; ( 1; 1) ; (-1; 1 ) }
Sửa lại một chút ở dòng thứ 8:
Mà m^2 + 1 chia 4 dư 1 hoặc 2 ( vì m^2 chia 4 dư 0 hoặc 1 )
Tìm tất cả các cặp số nguyên dương m,n sao cho n3+1 chia hết cho mn-1
Tìm tất cả các cặp số nguyên dương m,n sao cho n3+1 chia hết cho mn-1
Tìm tất cả các số nguyên dương m , n sao cho : a) 3^m - n! = 1 b) 3^m - n! = 2
a) Nếu n \(\ge\) 3 thì n! sẽ chia hết cho 1;2;3;... Ta có:
3m - n! = 1
3(3m-1 - 1.2...) =1 => vô lí vì 1 không chia hết cho 3
=> n <3.
Nếu n = 2 thì 3m - 2! = 1
3m - 2 = 1
3m =3
=> m = 1.
Nếu n =1 thì 3m - 1! = 1
3m - 1 =1
3m =2 => vô lí => loại
Vậy n = 2; m =1.
b) Nếu n \(\ge\)3 thì n! chia hết cho 1;2;3;... Ta có:
3m - n! = 2
3(3m-1 - 1.2...) = 2 => vô lí (vì 2 không chia hết cho 3) => n < 3
Nếu n = 2 thì 3m - 2! = 2
3m - 2 = 2
3m = 4 => vô lí => loại
Nếu n = 1 thì 3m - 1! = 2
3m - 1 = 2
3m = 3
=> m = 1.
Vậy n = 1; m = 1
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
a) Tìm tất cả các cặp số nguyên sao cho tổng bằng tích
b) Tìm số tự nhiên n (n > 0) sao cho tổng A = 1!+ 2!+ 3!+...+ n! là một số chính phương.
A)(0;0)(1;1)
B)Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a)xy=x+y
=>xy-x-y=0
=>x(y-1)-(y-1)-1=0
=>x(y-1)-(y-1)=1
=>(y-1)(x-1)=1
=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0
b)Câu này khó quá nhưng ủng hộ nha
Tìm tất cả các cặp sô nguyên (m,n) thỏa mãn: 2^m-2^n=2048