Những câu hỏi liên quan
OO
Xem chi tiết
TP
1 tháng 5 2019 lúc 16:43

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
TP
1 tháng 5 2019 lúc 16:48

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

Bình luận (0)
H24
1 tháng 5 2019 lúc 17:20

\(M=\frac{4x+1}{x^2+3}\)

\(\Leftrightarrow Mx^2+3M=4x+1\)

\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)

*Nếu M = 0 thì x =  -1/4

*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                                                     \(\Leftrightarrow4-M\left(3M-1\right)\ge0\)

                                                    \(\Leftrightarrow4-3M^2+M\ge0\)

                                                     \(\Leftrightarrow-1\le M\le\frac{4}{3}\)

Bình luận (0)
H24
Xem chi tiết
LC
27 tháng 10 2015 lúc 13:09

\(M=x-\frac{1}{2}+\frac{3}{4}-x=\left(x-x\right)+\left(\frac{3}{4}-\frac{1}{2}\right)=\frac{1}{4}\)

Bình luận (0)
MT
Xem chi tiết
H24
Xem chi tiết
LN
9 tháng 2 2021 lúc 11:15

Em yêu anh

Bình luận (0)
 Khách vãng lai đã xóa
BQ
Xem chi tiết
H24
1 tháng 5 2018 lúc 21:24

M=(8x+3)/(4x^2+1) 
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1) 
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1 
=> min M = -1 khi x = -1 
mặt khác: 
M = -1 + (2x +2)^2/(4x^2 +1) 
M = 4 - 5 + (2x +2)^2/(4x^2 +1) 
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1) 
M = 4 - (16x^2 - 8x +1)/(4x^2 +1) 
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4 
=> max M = 4 khi x = 1/4 

Bình luận (0)
HA
Xem chi tiết
NP
Xem chi tiết
H24
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Bình luận (0)
H24
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

Bình luận (0)
NP
3 tháng 12 2018 lúc 0:03

Thanks. <3

Bình luận (0)
TT
Xem chi tiết
NT
4 tháng 6 2016 lúc 11:43

Ta có:

\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)

Nhận xét:  a,b,c không âm nên theo BĐT Cô - si, ta có:

\(b^2+1\ge2\sqrt{b^2.1}=2b\)

=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)

=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)

Tương tự, ta cũng có: 

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)

\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)

Vậy ta suy ra

\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)

Mà a+b+c = 3 nên suy ra:

\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)

Ta có:

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

<=> \(a^2+b^2+c^2\ge ab+ac+bc\)

<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)

<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

<=> \(3^2\ge3\left(ab+ac+bc\right)\)

<=> \(ab+ac+bc\le3\)

<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)

<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)

Từ 1 và 2 => \(M\ge\frac{3}{2}\)

Dấu bằng xảy ra <=> a=b=c=1

Bình luận (0)
DN
Xem chi tiết
TD
25 tháng 5 2019 lúc 15:17

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

Bình luận (0)