Tìm x biết : ( x + 5 ) + ( x + 10 ) + ..... + ( x + 60 ) = 474
tìm x biết ( x + 5 ) + ( x + 10 ) + ................ ( x + 60 ) = 474
\(\left(x+5\right)+\left(x+10\right)+...+\left(x+60\right)=474\\ \Rightarrow\left(x+x+...+x\right)+\left(5+10+...+60\right)=474\\ \Rightarrow12x+390=474\\ \Rightarrow12x=84\\ \Rightarrow x=7\)
\(\left(x+5\right)+\left(x+10\right)+...+\left(x+60\right)=474\\ \left(x+x+...+x\right)+\left(\dfrac{\left(60+5\right)\left[\left(60-5\right):5+1\right]}{2}\right)=474\\ 12x+390=474\\ 12x=474-390\\ 12x=84\\ x=84:12\\ x=7\)
(X+5)+(x+10)+(x+15)+....+(x+60)=474
\(\left(x+5\right)+\left(x+10\right)+\left(x+15\right)+...+\left(x+60\right)=474\)
\(x+5+x+10+x+15+...+x+60=474\)
\(\left(x+x+...+x\right)+\left(5+10+15+...+60\right)=474\)
\(12\times x+390=474\)
\(12\times x=474-390\)
\(12\times x=84\)
\(x=84:12\)
\(x=7\)
Giải thích các bước giải:
Số số hạng x là:
\(\left(60-5\right):5+1=12\)(số)
Do đó ta có được phép nhân:\(12\times x\)
Tổng của \(5+10+15+...+60\) là:
\(\dfrac{\left(5+60\right)\times12}{2}=390\)
Vì vậy \(12\times x+390=474\)
#Sahara |
số số hạng cộng với x là :
(60 - 5) : 5 + 1 = 12 (số)
tổng các số số hạng cộng với x là :
(60 + 5) x 12 : 2 = 390
x + 390 = 474
x = 474 -390
x = 84
Tìm x biết:(x+5)+(x+10)+(x+15)+...+(x+60)=450
(x+5)+(x+10)+(x+15)+....+(x+60)=450
12.x + (5+10+....+60) =450
12.x + 390 =450
12.x =450-390
12.x = 60
=> x = 60:12 =5
Tìm số nguyên x biết: a) 5.x = 10; b) (-15).x = 60; c)12. x + 6 = 30; d) (-10). x + 30 =10
Tìm số nguyên x biết < x+5 > + <x+10> +<x+15> + ..... +< x + 60 > =450
bạn thử hỏi anh chị em của bạn xem
4/ Tìm sso nguyên x, biết :
a/ \(\dfrac{x}{10}\) = \(\dfrac{-11}{5}\) ; b/ \(\dfrac{-6}{x}\) = \(\dfrac{30}{60}\)
a: =>x/10=-22/10
hay x=-22
b: =>-6/x=6/12
=>x=-12
\(a,\dfrac{x}{10}=\dfrac{-11}{5}\Rightarrow x.5=10.\left(-11\right)=-110\\ \Rightarrow-22\\ b,\dfrac{-6}{x}=\dfrac{30}{60}\Rightarrow-6.60=x.30=-120\\ \Rightarrow x=-4\)
Nhanh hộ mình nhé đang cần gấp!!!
Tìm số nguyên x, biết: (x+5)+(x+10)+(x+15)+...+(x+60)=450.
\(\left(x+5\right)+\left(x+10\right)+\left(x+15\right)+...+\left(x+60\right)=450\)
\(\left(x+x+x+...+x\right)+\left(5+10+15+...+60\right)=450\)
=> \(12x+390=450\)
=> \(12x=60\)
=> \(x=5\)
Tìm x biết: \(\frac{x+10}{90}+\frac{x+20}{80}+\frac{x+30}{70}+\frac{x+40}{60}+\frac{x+50}{50}=-5\)
\(\frac{x+10}{90}+\frac{x+20}{80}+\frac{x+30}{70}+\frac{x+40}{60}+\frac{x+50}{50}=-5\)
<=> \(\frac{x+10}{90}+1+\frac{x+20}{80}+1+\frac{x+30}{70}+1+\frac{x+40}{60}+1+\frac{x+50}{50}+1=0\)
<=> \(\frac{x+100}{90}+\frac{x+100}{80}+\frac{x+100}{70}+\frac{x+100}{60}+\frac{x+100}{50}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{90}+\frac{1}{80}+\frac{1}{70}+\frac{1}{60}+\frac{1}{50}\right)=0\)
<=> x + 100 = 0
<=> x = -100
Vậy x = -100
Bài1: Tìm x biết:
a) 12 : 5 = x : 1,5
b) x/5 = 3/20
c) 4/x = 10/9
d) x/15 = 60/x
Bài 2:Cho x/3=y/5=z/6, tìm x,y,z biết
a) x + y -z=8
b)x-y+z=(-4)
c)x-2y+3z= (-33)
d) x^2 - 4y^2 + 2z^2 = (-475)
\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)
b, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)
c, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)
d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)
\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)