Những câu hỏi liên quan
OH
Xem chi tiết
QD
6 tháng 3 2016 lúc 9:55

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

Bình luận (0)
H24
16 tháng 3 2019 lúc 12:18

cái này ở trong học tốt toán 6 đúng không

Bình luận (0)
PA
Xem chi tiết
NA
Xem chi tiết
CR
19 tháng 8 2015 lúc 15:36

a,  Đặt A = 1/101 + 1/101 + 1/103 +...+ 1/150 
A là tổng 50 số giảm dần, và số nhỏ nhất là 1/150 
Vậy nên A > 50 x 1/150 
=> A > 1/3

b, ta có 
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12

Bình luận (0)
CB
Xem chi tiết
PK
Xem chi tiết
H24
15 tháng 3 2022 lúc 11:47

???

Bình luận (0)
ND
15 tháng 3 2022 lúc 14:03

:)???

Bình luận (0)
TL
Xem chi tiết
H24
3 tháng 8 2018 lúc 22:19

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{150}\)

\(\dfrac{1}{102}>\dfrac{1}{150}\)

....

\(\dfrac{1}{150}=\dfrac{1}{150}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)

Ta có:

\(\dfrac{1}{152}>\dfrac{1}{200}\)

\(\dfrac{1}{153}>\dfrac{1}{200}\)

....

\(\dfrac{1}{200}=\dfrac{1}{200}\)

=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)

=> \(A>\dfrac{7}{12}\)

Bình luận (2)
NT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TL
8 tháng 5 2015 lúc 12:55

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM

Bình luận (0)
TL
8 tháng 5 2015 lúc 13:06

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)

Bình luận (0)
LH
9 tháng 12 2016 lúc 16:16

mình ko hiểu cánh làm của các bạn

ghi thật chi tiết cho mình hiểu được ko

Bình luận (0)