Những câu hỏi liên quan
NM
Xem chi tiết
TL
3 tháng 5 2020 lúc 13:25

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-x\right)\left(\frac{1}{\sqrt{2}}-y\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3) và (4) ta có:

\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
MH
Xem chi tiết
TL
3 tháng 5 2020 lúc 8:29

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{2}}-\sqrt{y}\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3)(4) ta có:\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
KK
Xem chi tiết
vu
25 tháng 11 2017 lúc 20:12

z đâu ra ???

Bình luận (0)
KK
25 tháng 11 2017 lúc 20:18

x^2 + y^2 nha bn mk nhầm

Bình luận (0)
HT
Xem chi tiết
TT
Xem chi tiết
TH
21 tháng 8 2020 lúc 22:43

A=(6-2x)(12-3y)(2x+3y)/6

<=(6-2x+12-3y+2x+3y)3/(6.27)

=183/(6.27)=36

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
H24
13 tháng 8 2017 lúc 20:41

1)Áp dụng BĐT Cô si ta có:

\(x\sqrt{y-1}\le\frac{x\left(y-1+1\right)}{2}=\frac{xy}{2}\)

\(y\sqrt{x-1}\le\frac{y\left(x-1+1\right)}{2}=\frac{xy}{2}\)

Cộng thei vế 2 BĐT cùng chiều ta có:

\(VT\le\frac{xy}{2}+\frac{xy}{2}=\frac{2xy}{2}=xy=VP\)

Khi x=y

Bình luận (0)
H24
13 tháng 8 2017 lúc 20:45

Ta có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)

\(\Rightarrow2^2\ge3\cdot1\Rightarrow\frac{4}{3}\ge a,b,c\ge0\)

Khi a=b=c

Bình luận (0)
LL
13 tháng 8 2017 lúc 22:42

Câu 2:

\(1=a\left(b+c\right)+bc\le a\left(b+c\right)+\frac{1}{4}\left(b+c\right)^2=a\left(2-a\right)+\frac{1}{4}\left(2-a\right)^2\)

\(\Leftrightarrow4a-3a^2\ge0\Leftrightarrow a\left(4-3a\right)\ge0\Leftrightarrow0\le a\le\frac{4}{3}\)

tương tự với b,c 

Bình luận (0)
HA
Xem chi tiết
H24
12 tháng 2 2018 lúc 11:52

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

Bình luận (0)
PQ
12 tháng 2 2018 lúc 11:51

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)

Bình luận (0)
TM
12 tháng 2 2018 lúc 12:14

x=8 ;y=-4

Bình luận (0)
H24
Xem chi tiết